Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 36, Problem 43P
To determine
To show: that the electron is most likely to be found at one Bohr radius.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given a H atom in its 1s state, compute the probability that the electron is found within 0 and 1.8 armstrong from the nucleus. SHOW FULL AND COMPLETE PROCEDURE IN A CLEAR AND ORDERED WAY
Calculate the magnitude of the maximum orbital angular momentum Lmax for an electron in a hydrogen atom for states with a principal quantum number of 156.
Express your answer in units of ℏ to three significant figures.
Consider an electron in the ground-state orbit of the Bohrmodel of hydrogen. (a) Find the time required for the electron tocomplete one orbit about the nucleus. (b) Calculate the current(in amperes) corresponding to the electron’s motion.
Chapter 36 Solutions
Essential University Physics (3rd Edition)
Ch. 36.1 - Prob. 36.1GICh. 36.2 - Prob. 36.2GICh. 36.3 - Prob. 36.3GICh. 36.4 - Prob. 36.4GICh. 36.5 - Prob. 36.5GICh. 36 - Prob. 1FTDCh. 36 - Prob. 2FTDCh. 36 - Prob. 3FTDCh. 36 - Prob. 4FTDCh. 36 - Prob. 5FTD
Ch. 36 - Prob. 6FTDCh. 36 - Prob. 7FTDCh. 36 - Prob. 8FTDCh. 36 - Prob. 9FTDCh. 36 - Prob. 10FTDCh. 36 - Prob. 11FTDCh. 36 - Prob. 12FTDCh. 36 - What distinguishes a Bose-Einstein condensate from...Ch. 36 - Prob. 14ECh. 36 - Prob. 15ECh. 36 - Prob. 16ECh. 36 - Prob. 17ECh. 36 - Prob. 18ECh. 36 - Prob. 19ECh. 36 - Prob. 20ECh. 36 - Prob. 21ECh. 36 - Prob. 22ECh. 36 - Prob. 23ECh. 36 - Prob. 24ECh. 36 - Prob. 25ECh. 36 - Prob. 26ECh. 36 - Prob. 27ECh. 36 - Prob. 28ECh. 36 - Prob. 29ECh. 36 - Prob. 30ECh. 36 - Prob. 31ECh. 36 - Prob. 32ECh. 36 - Prob. 33ECh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - Prob. 42PCh. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - Prob. 45PCh. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - Prob. 64PCh. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71PCh. 36 - Prob. 72PCh. 36 - Prob. 73PCh. 36 - Prob. 74PCh. 36 - Prob. 75PCh. 36 - Prob. 76PPCh. 36 - Prob. 77PPCh. 36 - Prob. 78PPCh. 36 - Prob. 79PP
Knowledge Booster
Similar questions
- Write an expression for the total number of states with orbital angular momentum l.arrow_forwardConsider hydrogen in the ground state, 100 . (a) Use the derivative to determine the radial position for which the probability density, P(r), is a maximum. (b) Use the integral concept to determine the average radial position. (This is called the expectation value of the electrons radial position.) Express your answers into terms of the Bohr radius, a0. Hint: The expectation value is the just average value, (c) Why are these values different?arrow_forwardFor a hydrogen atom in an excited state with principal quantum number n, show that the smallest angle that the orbital angular momentum vector can make with respect to the z-axis is =cos1( n1n) .arrow_forward
- Write the election configuration for iron.arrow_forwardFor a 3d electron in an external magnetic field of 2.50 × 10-3 T, find (a) the current associated with the orbital angular momentum, and (b) the maximum torque.arrow_forwardFor what value of the principal quantum number n would the effective radius, as shown in a probability density dot plot for the hydrogen atom, be 1.0 mm? Assume that l has its maximum value of n - 1.arrow_forward
- Prove that The fine structure constant,a = v /c, here vị is the velocity of the electron in the ground state of the Bohr atom and a = 28ghc where the symbols have their usual meaning.arrow_forwardCalculate the probability that the electron in the hydrogen atom, in its ground state, will be found between spherical shells whose radii are a and 2a, where a is the Bohr radius.arrow_forwardA spin state of an electron in the vector form is given by 3i X = A 4 %3D (a) Determine the normalization constant A, assuming it to be real and positive. (b) Write down the x using the X+ and X-. If z-component of the spin of the electron is measured, what is the probability of finding the value in +ħ/2? (c) Determine the expectation value and uncertainty of S? in terms of h when the electron is in spin state x. Justify your answer. (d) Determine the expectation value of the product S?S, in terms of h when the electron is in spin state X.arrow_forward
- (1) Find the average orbital radius for the electron in the 3p state of hydrogen. Compare your answer with the radius of the Bohr orbit for n=3. (2) What is the probability that this electron is outside the radius given by the Bohr model?arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forwardThe wave function for H-atom in 1s state is given below. Explain the radial probability density of H-atom in 1s state and also write an expression for the same. Sketch schematically the plot of this vs. radial distance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax