
Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 36.92AP
An object 2.00 cm high is placed 40.0 cm to the left of a converging lens having a focal length of 30.0 cm. A diverging lens with a focal length of -20.0 cm is placed 110 cm to the right of the converging lens. Determine (a) the position and (b) the magnification of the final image, (c) Is the image upright or inverted? (d) What If? Repeat parts (a) through (c) for the case in which the second lens is a converging lens having a focal length of 20.0 cm.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
a)
What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless.
T =
b)
If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg?
mm =
Curve Fitter
CURVE FITTER
Open
Update Fit
Save
New
Exclusion Rules
Select Validation Data
Polynomial Exponential Logarithmic
Auto
Fourier
Fit
Fit
Duplicate Data
Manual
FILE
DATA
FIT TYPE
FIT
Harmonic Motion X
us
0.45
mi
ce
0.4
0.35
0.3
0.25
0.2
Residuals Plot
Contour Plot
Plot Prediction Bounds None
VISUALIZATION
Colormap Export
PREFERENCES EXPORT
Fit Options
COA Fourier
Equation
Fit Plot
x vs. t
-Harmonic Motion
a0+ a1*cos(x*w) +
b1*sin(x*w)
Number of terms
Center and scale
1
▸ Advanced Options
Read about fit options
Results
Value
Lower
Upper
0.15
a0
0.1586
0.1551
0.1620
a1
0.0163
0.0115
0.0211
0.1
b1
0.0011
-0.0093
0.0115
W
1.0473
0.9880
1.1066
2
8
10
t
12
14
16
18
20
Goodness of Fit
Value
Table of Fits
SSE
0.2671
Fit State Fit name
Data
Harmonic Motion x vs. t
Fit type
fourier1
R-square
0.13345
SSE
DFE
0.26712
296
Adj R-sq
0.12467
RMSE
0.030041
# Coeff
Valic
R-square
0.1335
4
DFE
296.0000
Adj R-sq
0.1247
RMSE
0.0300
What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?
Chapter 36 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 36 - You are standing approximately 2 m away from a...Ch. 36 - You wish to start a fire by reflecting sunlight...Ch. 36 - Consider the image in the mirror in Figure 35.14....Ch. 36 - Prob. 36.4QQCh. 36 - Prob. 36.5QQCh. 36 - What is the focal length of a pane of window...Ch. 36 - A camera can be modeled as a simple converging...Ch. 36 - Two campers wish to start a fire during the day....Ch. 36 - The faceplate of a diving mask can be ground into...Ch. 36 - Lulu looks at her image in a makeup mirror. lt is...
Ch. 36 - An object is located 50.0 cm from a converging...Ch. 36 - Prob. 36.4OQCh. 36 - A converging lens in a vertical plane receives...Ch. 36 - Prob. 36.6OQCh. 36 - Prob. 36.7OQCh. 36 - Prob. 36.8OQCh. 36 - A person spearfishing from a boat sees a...Ch. 36 - Prob. 36.10OQCh. 36 - A converging lens made of crown glass has a focal...Ch. 36 - A converging lens of focal length 8 cm forms a...Ch. 36 - Prob. 36.13OQCh. 36 - An object, represented by a gray arrow, is placed...Ch. 36 - Prob. 36.1CQCh. 36 - Prob. 36.2CQCh. 36 - Why do some emergency vehicles have the symbol...Ch. 36 - Prob. 36.4CQCh. 36 - Prob. 36.5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 36.7CQCh. 36 - Lenses used in eyeglasses, whether converging or...Ch. 36 - Suppose you want to use a converging lens to...Ch. 36 - Consider a spherical concave mirror with the...Ch. 36 - In Figures CQ36.11a and CQ36.11b, which glasses...Ch. 36 - Prob. 36.12CQCh. 36 - Prob. 36.13CQCh. 36 - Prob. 36.14CQCh. 36 - Prob. 36.15CQCh. 36 - Prob. 36.16CQCh. 36 - Prob. 36.17CQCh. 36 - Determine the minimum height of a vertical flat...Ch. 36 - In a choir practice room, two parallel walls are...Ch. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 36.4PCh. 36 - A periscope (Fig. P35.3) is useful for viewing...Ch. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Two plane mirrors stand facing each other, 3.00 m...Ch. 36 - An object is placed 50.0 cm from a concave...Ch. 36 - A concave spherical mirror has a radius of...Ch. 36 - An object is placed 20.0 cm from a concave...Ch. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 36.12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - A dentist uses a spherical mirror to examine a...Ch. 36 - A large hall in a museum has a niche in one wall....Ch. 36 - Why is the following situation impossible? At a...Ch. 36 - Prob. 36.17PCh. 36 - A certain Christmas tree ornament is a silver...Ch. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - (a) A concave spherical mirror forms ail inverted...Ch. 36 - An object 10.0 cm tall is placed at the zero mark...Ch. 36 - A concave spherical mirror has a radius of...Ch. 36 - A dedicated sports car enthusiast polishes the...Ch. 36 - A convex spherical mirror has a focal length of...Ch. 36 - A spherical mirror is to be used to form an image...Ch. 36 - Review. A ball is dropped at t = 0 from rest 3.00...Ch. 36 - You unconsciously estimate the distance to an...Ch. 36 - Prob. 36.28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - A cubical block of ice 50.0 cm on a side is placed...Ch. 36 - Prob. 36.31PCh. 36 - Prob. 36.32PCh. 36 - A flint glass, plate rests on the bottom of an...Ch. 36 - Figure P35.20 (page 958) shows a curved surface...Ch. 36 - Prob. 36.35PCh. 36 - Prob. 36.36PCh. 36 - A goldfish is swimming at 2.00 cm/s toward the...Ch. 36 - A thin lens has a focal length of 25.0 cm. Locate...Ch. 36 - An object located 32.0 cm in front of a lens forms...Ch. 36 - An object is located 20.0 cm to the left of a...Ch. 36 - The projection lens in a certain slide projector...Ch. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - A contact lens is made of plastic with an index of...Ch. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - A diverging lens has a focal length of magnitude...Ch. 36 - Prob. 36.47PCh. 36 - Suppose an object has thickness dp so that it...Ch. 36 - The left face of a biconvex lens has a radius of...Ch. 36 - In Figure P35.30, a thin converging lens of focal...Ch. 36 - An antelope is at a distance of 20.0 m from a...Ch. 36 - Prob. 36.52PCh. 36 - A 1.00-cm-high object is placed 4.00 cm to the...Ch. 36 - The magnitudes of the radii of curvature are 32.5...Ch. 36 - Two rays traveling parallel to the principal axis...Ch. 36 - Prob. 36.56PCh. 36 - Figure 35.34 diagrams a cross section of a camera....Ch. 36 - Josh cannot see objects clearly beyond 25.0 cm...Ch. 36 - Prob. 36.59PCh. 36 - A person sees clearly wearing eyeglasses that have...Ch. 36 - Prob. 36.61PCh. 36 - A certain childs near point is 10.0 cm; her far...Ch. 36 - A person is to be fitted with bifocals. She can...Ch. 36 - A simple model of the human eye ignores its lens...Ch. 36 - A patient has a near point of 45.0 cm and far...Ch. 36 - A lens that has a focal length of 5.00 cm is used...Ch. 36 - The distance between the eyepiece and the...Ch. 36 - The refracting telescope at the Yerkes Observatory...Ch. 36 - A certain telescope has an objective mirror with...Ch. 36 - Astronomers often take photographs with the...Ch. 36 - Prob. 36.71APCh. 36 - A real object is located at the zero end of a...Ch. 36 - The distance between an object and its upright...Ch. 36 - Prob. 36.74APCh. 36 - Andy decides to use an old pair of eyeglasses to...Ch. 36 - Prob. 36.76APCh. 36 - The lens and mirror in Figure P36.77 are separated...Ch. 36 - Two converging lenses having focal lengths of f1 =...Ch. 36 - Figure P36.79 shows a piece of glass with index of...Ch. 36 - Prob. 36.80APCh. 36 - The object in Figure P36.81 is midway between the...Ch. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 36.83APCh. 36 - Prob. 36.84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Why is the following situation impossible?...Ch. 36 - An object is placed 12.0 cm to the left of a...Ch. 36 - An object is placed a distance p to the left of a...Ch. 36 - An observer to the right of the mirror-lens...Ch. 36 - In a darkened room, a burning candle is placed...Ch. 36 - Prob. 36.91APCh. 36 - An object 2.00 cm high is placed 40.0 cm to the...Ch. 36 - Assume the intensity of sunlight is 1.00 kW/m2 at...Ch. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Figure P36.95 shows a thin converging lens for...Ch. 36 - A floating strawberry illusion is achieved with...Ch. 36 - Consider the lensmirror arrangement shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forwardNo chatgpt pls will upvotearrow_forward
- Review the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forwardPlease solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)arrow_forwardAnswer thisarrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forward
- No chatgpt pls will upvotearrow_forward4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY