Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 36.58P
Josh cannot see objects clearly beyond 25.0 cm (his far point). If he has no astigmatism and contact lenses are prescribed for him, what (a) power and (b) type of lens are required to correct his vision?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 36 - You are standing approximately 2 m away from a...Ch. 36 - You wish to start a fire by reflecting sunlight...Ch. 36 - Consider the image in the mirror in Figure 35.14....Ch. 36 - Prob. 36.4QQCh. 36 - Prob. 36.5QQCh. 36 - What is the focal length of a pane of window...Ch. 36 - A camera can be modeled as a simple converging...Ch. 36 - Two campers wish to start a fire during the day....Ch. 36 - The faceplate of a diving mask can be ground into...Ch. 36 - Lulu looks at her image in a makeup mirror. lt is...
Ch. 36 - An object is located 50.0 cm from a converging...Ch. 36 - Prob. 36.4OQCh. 36 - A converging lens in a vertical plane receives...Ch. 36 - Prob. 36.6OQCh. 36 - Prob. 36.7OQCh. 36 - Prob. 36.8OQCh. 36 - A person spearfishing from a boat sees a...Ch. 36 - Prob. 36.10OQCh. 36 - A converging lens made of crown glass has a focal...Ch. 36 - A converging lens of focal length 8 cm forms a...Ch. 36 - Prob. 36.13OQCh. 36 - An object, represented by a gray arrow, is placed...Ch. 36 - Prob. 36.1CQCh. 36 - Prob. 36.2CQCh. 36 - Why do some emergency vehicles have the symbol...Ch. 36 - Prob. 36.4CQCh. 36 - Prob. 36.5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 36.7CQCh. 36 - Lenses used in eyeglasses, whether converging or...Ch. 36 - Suppose you want to use a converging lens to...Ch. 36 - Consider a spherical concave mirror with the...Ch. 36 - In Figures CQ36.11a and CQ36.11b, which glasses...Ch. 36 - Prob. 36.12CQCh. 36 - Prob. 36.13CQCh. 36 - Prob. 36.14CQCh. 36 - Prob. 36.15CQCh. 36 - Prob. 36.16CQCh. 36 - Prob. 36.17CQCh. 36 - Determine the minimum height of a vertical flat...Ch. 36 - In a choir practice room, two parallel walls are...Ch. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 36.4PCh. 36 - A periscope (Fig. P35.3) is useful for viewing...Ch. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Two plane mirrors stand facing each other, 3.00 m...Ch. 36 - An object is placed 50.0 cm from a concave...Ch. 36 - A concave spherical mirror has a radius of...Ch. 36 - An object is placed 20.0 cm from a concave...Ch. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 36.12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - A dentist uses a spherical mirror to examine a...Ch. 36 - A large hall in a museum has a niche in one wall....Ch. 36 - Why is the following situation impossible? At a...Ch. 36 - Prob. 36.17PCh. 36 - A certain Christmas tree ornament is a silver...Ch. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - (a) A concave spherical mirror forms ail inverted...Ch. 36 - An object 10.0 cm tall is placed at the zero mark...Ch. 36 - A concave spherical mirror has a radius of...Ch. 36 - A dedicated sports car enthusiast polishes the...Ch. 36 - A convex spherical mirror has a focal length of...Ch. 36 - A spherical mirror is to be used to form an image...Ch. 36 - Review. A ball is dropped at t = 0 from rest 3.00...Ch. 36 - You unconsciously estimate the distance to an...Ch. 36 - Prob. 36.28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - A cubical block of ice 50.0 cm on a side is placed...Ch. 36 - Prob. 36.31PCh. 36 - Prob. 36.32PCh. 36 - A flint glass, plate rests on the bottom of an...Ch. 36 - Figure P35.20 (page 958) shows a curved surface...Ch. 36 - Prob. 36.35PCh. 36 - Prob. 36.36PCh. 36 - A goldfish is swimming at 2.00 cm/s toward the...Ch. 36 - A thin lens has a focal length of 25.0 cm. Locate...Ch. 36 - An object located 32.0 cm in front of a lens forms...Ch. 36 - An object is located 20.0 cm to the left of a...Ch. 36 - The projection lens in a certain slide projector...Ch. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - A contact lens is made of plastic with an index of...Ch. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - A diverging lens has a focal length of magnitude...Ch. 36 - Prob. 36.47PCh. 36 - Suppose an object has thickness dp so that it...Ch. 36 - The left face of a biconvex lens has a radius of...Ch. 36 - In Figure P35.30, a thin converging lens of focal...Ch. 36 - An antelope is at a distance of 20.0 m from a...Ch. 36 - Prob. 36.52PCh. 36 - A 1.00-cm-high object is placed 4.00 cm to the...Ch. 36 - The magnitudes of the radii of curvature are 32.5...Ch. 36 - Two rays traveling parallel to the principal axis...Ch. 36 - Prob. 36.56PCh. 36 - Figure 35.34 diagrams a cross section of a camera....Ch. 36 - Josh cannot see objects clearly beyond 25.0 cm...Ch. 36 - Prob. 36.59PCh. 36 - A person sees clearly wearing eyeglasses that have...Ch. 36 - Prob. 36.61PCh. 36 - A certain childs near point is 10.0 cm; her far...Ch. 36 - A person is to be fitted with bifocals. She can...Ch. 36 - A simple model of the human eye ignores its lens...Ch. 36 - A patient has a near point of 45.0 cm and far...Ch. 36 - A lens that has a focal length of 5.00 cm is used...Ch. 36 - The distance between the eyepiece and the...Ch. 36 - The refracting telescope at the Yerkes Observatory...Ch. 36 - A certain telescope has an objective mirror with...Ch. 36 - Astronomers often take photographs with the...Ch. 36 - Prob. 36.71APCh. 36 - A real object is located at the zero end of a...Ch. 36 - The distance between an object and its upright...Ch. 36 - Prob. 36.74APCh. 36 - Andy decides to use an old pair of eyeglasses to...Ch. 36 - Prob. 36.76APCh. 36 - The lens and mirror in Figure P36.77 are separated...Ch. 36 - Two converging lenses having focal lengths of f1 =...Ch. 36 - Figure P36.79 shows a piece of glass with index of...Ch. 36 - Prob. 36.80APCh. 36 - The object in Figure P36.81 is midway between the...Ch. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 36.83APCh. 36 - Prob. 36.84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Why is the following situation impossible?...Ch. 36 - An object is placed 12.0 cm to the left of a...Ch. 36 - An object is placed a distance p to the left of a...Ch. 36 - An observer to the right of the mirror-lens...Ch. 36 - In a darkened room, a burning candle is placed...Ch. 36 - Prob. 36.91APCh. 36 - An object 2.00 cm high is placed 40.0 cm to the...Ch. 36 - Assume the intensity of sunlight is 1.00 kW/m2 at...Ch. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Figure P36.95 shows a thin converging lens for...Ch. 36 - A floating strawberry illusion is achieved with...Ch. 36 - Consider the lensmirror arrangement shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Figures CQ36.11a and CQ36.11b, which glasses correct nearsightedness and which correct farsightedness?arrow_forwardTwo converging lenses having focal length of f1 = 10.0 cm and f2 = 20.0 cm are placed d = 50.0 cm apart, as shown in Figure P23.44. The final image is to be located between the lenses, at the position x = 31.0 cm indicated. (a) How far to the left of the first lens should the object be positioned? (b) What is the overall magnification of the system? (c) Is the final image uptight or inserted? Figure P23.44arrow_forwardThe near point of an eye is 75.0 cm. (a) What should be the power of a corrective lens prescribed to enable the eye to see an object clearly at 25.0 cm? (b) If, using the corrective lens, the person can see an object clearly at 26 0 cm but not at 25.0 cm, by how many diopters did the lens grinder miss the prescription?arrow_forward
- Two thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardShow that the magnification of a thin lens is given by M = di/do (Eq. 38.6). Hint: Follow the derivation of the lens makers equation (page 1233) and start with a thick lens.arrow_forwardThe accommodation limits for a nearsighted persons eyes are 18.0 cm and 80.0 cm. When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly?arrow_forward
- In Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c, and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P26.38arrow_forwardA particular nearsighted patient cant see objects clearly beyond 15.0 cm from their eye. Determine (a) the lens power required to correct the patients vision and (b) the type of lens required (converging or diverging). Neglect the distance between the eye and the corrective lens.arrow_forwardA person sees clearly wearing eyeglasses that have a power of 4.00 diopters when the lenses are 2.00 cm in front of the eyes. (a) What is the focal length of the lens? (b) Is the person nearsighted or farsighted? (c) If the person wants to switch to contact lenses placed directly on the eyes, what lens power should be prescribed?arrow_forward
- Two stars that are 109km apart are viewed by a telescope and found to be separated by an angle of 105 radians. If the eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the stars from the observer?arrow_forwardThe left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forwardA particular patients eyes are unable to focus on objects closer than 35.0 cm and corrective lenses are to be prescribed so that the patient can focus on objects 20.0 cm from their eyes. (a) Is the patient nearsighted or farsighted? (b) If contact lenses are to lie prescribed, determine the required lens power. (c) If eyeglasses are to be prescribed instead and the distance between the eyes and the lenses is 2.00 cm, determine the power of the required corrective lenses. (d) Are the required lenses converging or diverging?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY