Concept explainers
Two converging lenses having focal lengths of f1 = 10.0 cm and f2 = 20.0 cm are placed a distance d = 50.0 cm apart as shown in Figure P35.48. The image due to light passing through both lenses is to be located between the lenses at the position x = 31.0 cm indicated. (a) At what value of p should the object be positioned to the left of the first lens? (b) What is the magnification of the final image? (c) Is the final image upright or inverted? (d) Is the final image real or virtual?
(a)
Answer to Problem 36.78AP
Explanation of Solution
Given info: The focal length of first lens
Write the expression for the final image distance
Here,
Substitute
Write the expression for the thin lens equation.
Here,
Substitute
The image distance to the first lens
Here,
Substitute
Formula to calculate the thin lens equation is,
Here,
Substitute
Conclusion:
Therefore, the value of
(b)
Answer to Problem 36.78AP
Explanation of Solution
Given info: The focal length of first lens
Write the equation for magnification of the first lens.
Write the equation for magnification of the second lens.
Write the equation for magnification of the final image.
Substitute
Substitute
Conclusion:
Therefore, the magnification of the final image is
(c)
Answer to Problem 36.78AP
Explanation of Solution
Given info: The focal length of first lens is
Here, the value of magnification of the final image is
If the magnification is found to be negative
Thus, the image formed is an inverted image.
Conclusion:
Therefore, the final image is inverted.
(d)
Answer to Problem 36.78AP
Explanation of Solution
Given info: The focal length of first lens is
Here, the value of final image distance is
If the value of final image is found to be negative
Thus, the image formed is a virtual image.
Conclusion:
Therefore, the final image is virtual.
Want to see more full solutions like this?
Chapter 36 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Figure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forwardWhy is the following situation impossible? Consider the lensmirror combination shown in Figure P35.55. The lens has a focal length of fL = 0.200 m, and the mirror has a focal length of fM = 0.500 m. The lens and mirror are placed a distance d = 1.30 m apart, and an object is placed at p = 0.300 m from the lens. By moving a screen to various positions to the left of the lens, a student finds two different positions of the screen that produce a sharp image of the object. One of these positions corresponds to light leaving the object and traveling to the left through the lens. The other position corresponds to light traveling to the right from the object, reflecting from the mirror and then passing through the lens. Figure P35.55 Problem 55 and 57.arrow_forwardA converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forward
- Two converging lenses having focal length of f1 = 10.0 cm and f2 = 20.0 cm are placed d = 50.0 cm apart, as shown in Figure P23.44. The final image is to be located between the lenses, at the position x = 31.0 cm indicated. (a) How far to the left of the first lens should the object be positioned? (b) What is the overall magnification of the system? (c) Is the final image uptight or inserted? Figure P23.44arrow_forwardA floating strawberry illusion is achieved with two parabolic mirrors, each having a focal length 7.50 cm, facing each other as shown in Figure P33.58. If a strawberry is placed on the lower mirror, an image of the strawberry is formed at the small opening at the center of the top mirror, 7.50 cm above the lowest point of the bottom mirror. The position of the eye in Figure P35.58a corresponds to the view of the apparatus in Figure P35.58b. Consider the light path marked A. Notice that this light path is blocked by the upper mirror so that the strawberry itself is not directly observable. The light path marked B corresponds to the eye viewing the image of the strawberry that is formed at the opening at the top of the apparatus. (a) Show that the final image is formed at that location and describe its characteristics. (b) A very startling effect is to shine a flashlight beam on this image. Even al a glancing angle, the incoming light beam is seemingly reflected from the image! Explain. Figure P35.58arrow_forwardIn Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c, and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P26.38arrow_forward
- The left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forwardAn observer to the right of the mirror-lens combination shown in Figure P36.89 (not to scale) sees two real images that are the same size and in the same location. One image is upright, and the other is inverted. Both images are 1.50 times larger than the object. The lens has a focal length of 10.0 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length of the mirror.arrow_forwardA leaf of length h is positioned 71.0 cm in front of a converging lens with a focal length of 39.0 cm. An observer views the image of the leaf from a position 1.26 in behind the lens, as shown in Figure P25.25. (a) What is the magnitude of the lateral magnification (the ratio of the image size to the object size) produced by the lens? (b) What angular magnification is achieved by viewing the image of the leaf rather than viewing the loaf directly? Figure P25.25arrow_forward
- An object is placed a distance of 10.0 cm to the left of a thin converging lens of focal length f = 8.00 cm, and a concave spherical mirror with radius of curvature +18.0 cm is placed a distance of 45.0 cm to the right of the lens (Fig. P38.129). a. What is the location of the final image formed by the lensmirror combination as seen by an observer positioned to the left of the object? b. What is the magnification of the final image as seen by an observer positioned to the left of the object? c. Is the final image formed by the lensmirror combination upright or inverted? FIGURE P38.129arrow_forwardTwo thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardFigure P26.72 shows a thin converging lens for which the radii of curvature of its surfaces have magnitudes of 9.00 cm and 11.0 cm. The lens is in front of a concave spherical mirror with the radius of curvature R = 8.00 cm. Assume the focal points F1 and F2 of the lens are 5.00 cm from the center of the lens. (a) Determine the index of refraction of the lens material. The lens and mirror are 20.0 cm apart, and an object is placed 8.00 cm to the left of the lens. Determine (b) the position of the final image and (c) its magnification as seen by the eye in the figure. (d) Is the final image inverted or upright? Explain.arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning