Concept explainers
You unconsciously estimate the distance to an object from the angle it subtends in your field of view. This angle θ in radians is related to the linear height of the object h and to the distance d by θ = h/d. Assume yon are driving a car and another car, 1.50 m high, is 24.0 m behind you. (a) Suppose your car has a flat passenger-side rearview mirror, 1.55 m from your eyes. How far from your eyes is the image of the car following you? (b) What angle does the image subtend in your field of view? (c) What If? Now suppose your car has a convex rearview mirror with a radius of curvature of magnitude 2.00 m (as suggested in Fig. 35.15). How far from your eyes is the image of the car behind you? (d) What angle does the image subtend at your eyes? (e) Based on its angular size, how far away does the following car appear to be?
(a)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
The rear view mirror is flat plane mirror and for the case of plane mirror the object distance is same as the image distance. Therefore the image distance for the following car is same as the car itself.
Hence, the distance of the car from observer eyes as seen through the flat rear view side mirror is,
Here,
Substitute
Conclusion:
Therefore, the image of the car form the observer’s eye is at distance of
(b)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the angle subtended by the object,
Here,
For the case of plane mirrors the object height and image height are equal and object distance and image distance are equal. Hence, to find the angle subtended by the image of the following car
Substitute
Conclusion:
Therefore, the angle subtended is
(c)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the image distance form a convex mirror for a given object is
Here,
Substitute
Negative
The image distance is negative because the image is formed behind the mirror. Therefore the image distance from the observer’s eye is,
Here,
Substitute
Conclusion:
Therefore, the image of the following car is at
(d)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
From Equation (2) formula to calculate the angle subtended by the image,
Here,
For the case of convex mirrors the object height and image height are not equal.
Formula to calculate the image height is,
Here,
Substitute
From equation (6) and equation (9) respectively, substitute
Conclusion:
Therefore, the angle subtended is
(e)
Answer to Problem 36.27P
Explanation of Solution
Given info: The height of the following car is
Formula to calculate the angle subtended by the image,
Here,
Substitute
Conclusion:
Therefore, the image appears to be
Want to see more full solutions like this?
Chapter 36 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning