Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 78AP
(a)
To determine
The verification for the Snell's law of refraction using the given data.
(b)
To determine
The significance of the shape of graph.
(c)
To determine
The index of refraction of water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given the following data, (a) compare the index of refraction with the standard for glass and plastic plate. Analyze the values and write a a general statement about it.
(b) what will happen to the angle of refraction when the angle of incidence increases? Explain.
(c) what will happen to the angle of refraction if light enters a medium of lower index of refraction? Explain the concept behind this.
Students allow a narrow beam of laser light to strike a water surface. They arrange to measure the angle of refraction for selected angles of incidence and record the data shown in the following table:
Use the data to verify Snell’s law of refraction by plotting the sine of the angle of incidence versus the sine of the angle of refraction. From the resulting plot, deduce the index of refraction of water.
Light travels from air into a fluid which has a refractive index of 1.55. The angle of incidence is 41o.a)Calculate sin of the angle of incidence. Give your answer to 3 decimal places and use it to this accuracy in any subsequent calculations, if needed. Hint: make sure your calculator is on degrees (not radians or grads).
b)Calculate the angle of refraction (in degrees). Take the index of refraction of air as 1.Make sure you do all working to at least 3 decimal places. Give your answer to 1 decimal place.
c)Light travels out of the fluid into air at the critical angle. What is the angle of refraction (in degrees)? Give your answer as a whole number.
d)Calculate the critical angle (in degrees). Give your answer to 1 decimal place.
Chapter 35 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 35.4 - Prob. 35.1QQCh. 35.5 - If beam is the incoming beam in Figure 34.10b,...Ch. 35.5 - Light passes from a material with index of...Ch. 35.7 - Prob. 35.4QQCh. 35.8 - Prob. 35.5QQCh. 35 - Prob. 1OQCh. 35 - Prob. 2OQCh. 35 - Prob. 3OQCh. 35 - Prob. 4OQCh. 35 - Prob. 5OQ
Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardLight traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardLight is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forward
- Consider a beam of light from the left entering a prism of apex angle as shown in Figure P34.34. Two angles of incidence, 1, and 3, are shown as Hell as two angles of refraction, 2 and 4. Show that = 1 + 3. Figure P34.34arrow_forwardFor specular reflection, what is the situation with an angle of incidence of (a) 0 and (b) 90?arrow_forward14. A ray of light strikes the midpoint of one face of an equiangular (60°−60°−60°) glass prism (n = 1.5) at an angle of incidence of 30°. (a) Trace the path of the light ray through the glass and find the angles of incidence and refraction at each surface. (b) If a small fraction of light is also reflected at each surface, what are the angles of reflection at the surfaces?arrow_forward
- Light is in a crystal with an index of refraction of 1.75. The crystal is in air. The light traveling in the crystal is incident on the crystal-air interface. What is the angle of incidence that, using Snell's law, would lead to an angle of refraction of 90 degrees? Give your answer in degrees.arrow_forwardMeasuring n Using a Prism Although we do not prove it here, the minimum angle of deviation &min for a prism occurs when the angle of incidence 0, is such that the refracted ray inside the prism makes the same angle with the normal to the two prism faces as shown in the figure. Obtain an expression for the index of refraction of the prism material in terms of the minimum angle of deviation and the apex angle 0. Ф 2k8min A light ray passing through a prism at the minimum angle of deviation 6min: SOLUTION Conceptualize Study the figure carefully and be sure you understand why the light ray comes out of the prism traveling in a different direction. Categorize In this example, light enters a material through one surface and leaves the material at another surface. Let's apply the wave under refraction v model to the light passing through the prism. Analyze Ф Consider the geometry in the figure, where we have used symmetry to label several angles. The reproduction of the angle at 2 the…arrow_forwardIn the drawing, a laser is fired from point P in the center of the open side of the square room. The laser is pointed at the mirrored wall on the right. At what angle of incidence must the light strike the right-hand wall so that, after being reflected, the light hits the left corner of the back wall? (Ignore the point marked "target.") Give your answer to three significant figures.arrow_forward
- Write a first general equation giving the angle of refraction (r) as a function of the angle of incidence (i) on a rectangular piece of acrylic and the refractive index (n) of the acrylic.Then write a second general equation giving the lateral deviation (d) of an incident beam as a function of the angle of incidence (i), the angle of refraction (r) and the thickness (e) of the rectangular piece of acrylic. Note that there are 2 ways to calculate (d), which result in 2 mathematically equivalent equations.Finally, combine the two equations to obtain the physical model of the experiment, an equation that allows you to calculate the dependent variable (d) based on the independent variable (i), as well as the parameters of the experiment (e). and N). The variable (r) is an intermediate variable that should not be in the final equation.arrow_forwardStudents determine the refractive index of a substance by way of experiment. The students shine a laser in a piece of glass that is immersed in an unknown substance. They increase the angle of incidence until the light is only reflected (not transmitted to the outside substance) and record the critical angle as 63 degrees. The index of refraction of the known substance is 1.52. What is the index of refraction of the unknown substance that surrounds the glass? 63° n = 1.52 1.74 1.35 1.52 1.00arrow_forwardOptical fibers utilize total internal reflection (TIR) to confine and guide light. They are typically used in materials processing as a means of delivering light from a laser source to a processing head. Other applications include telecommunications, spectroscopy, illumination and sensors. A particularly common form of optical fiber is a step-index fiber, shown in Figure 1. Step-index fibers have an inner core made from a material with a refractive index (ncore) that is higher than the surrounding cladding layer (nclad). Within the fiber, a critical angle of incidence (θcrit) exists such that light will reflect off the core/cladding interface by TIR, as opposed to refracting into the fiber cladding. To fulfil the conditions for TIR to occur, the angle of incidence of light launched into the fiber must be less than a certain angle, which is defined as the acceptance angle (θacc). The critical angle for TIR in a given fiber can be calculated on the basis of the refractive indices of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY