Concept explainers
The expected angle of refraction in the sheet
Answer to Problem 31P
The expected angle of refraction in the sheet
Explanation of Solution
Assume
The following figure shows the refraction of the laser beam when the sheet
Figure-(1)
Write the equation using Snell’s law in the above figure.
Here,
Write the equation using Snell’s law in the figure-(1).
The following figure shows the refraction of the laser beam when the sheet
Figure-(2)
Write the equation using Snell’s law in the above figure.
Here,
Write the equation using Snell’s law in the figure-(2).
Compare the equations (III) and (IV).
The following figure shows the refraction of the laser beam when the sheet
Figure-(3)
Write the equation using Snell’s law in the above figure.
Here,
Write the equation using Snell’s law in the figure-(2).
Here,
Compare the equations (VI) and (VII).
The angle of refraction in the sheet
The angle of refraction in the sheet
Rewrite the equation (IV).
Rewrite the equation (II).
Conclusion:
Substitute
Substitute
Therefore, the expected angle of refraction in the sheet
Want to see more full solutions like this?
Chapter 35 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- A laser beam with a total power of 22 watts is incident at a normal angle of incidence on a Lambertian surface. How much power reaches a detector with an area of 0.1 cm2 at an angle of 25 degrees located at a distance of 40 cm from where the beam strikes the surface? Please check closest answer. 0.525 mW 0.397 mW 0.247 mW 0.421 mWarrow_forwardA ray of light is incident on an air/water interface. The ray makes an angle of theta= 33 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33. Numerically, what is the angle in degree?arrow_forwardPhotons with a wavelength of 559 nm in air enter a plate of crown glass with index of refraction n = 1.52. Find the speed, wavelength, and energy of a photon in the glass. HINT (a) speed (in m/s) m/s (b) wavelength (in m) m (c) energy (in J) Jarrow_forward
- A ray of light is incident on an air/water interface. The ray makes an angle of θ1 = 34 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33. Part (a) Numerically, what is the angle in degrees? θ2 =? Part (b) Write an expression for the reflection angle ψ, with respect to the surface. ψ =? Part (c) Numerically, what is this angle in degrees? ψ =?arrow_forwardIn the figure, light from ray A refracts from material 1 (n₁ = 1.73) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.40). (a) What is the value of incident angle BA? (b) If 8A is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle Og? (d) If Og is decreased, does part of the light refract into material 3? OB I ng no 121arrow_forwardConsider an incident ray striking the surface of a material at an angle Ѳ1 = 65° with respect to the normal. The ray undergoes refraction. What is the angle Ѳ2 ? Given that n1 = 1.1 and n2 = 1.47.arrow_forward
- Q blem 9: Two mirrors are held at an angle of y-130 degrees with respect to one another. A ray of light is incident of the first mirror at an angle of 8. When it reflects off of the mirror next to it makes an angle of o-13.5 degrees. Randomized Variables i -130 t(a) Write an expression for the angle of incidence 8. a V d i m Submit B 0 8 P Part (b) Numerically what is this angle? Hent 9 a h k t ( INH + NO 4 7 89 BO 4 5 6 1 2 3 0 A END CLEAR ACKUACE I give up!arrow_forwardA beam of light traveling in air strikes a slab of transparent material. The incident beam makes an angle of 60° with the normal, and the refracted beam make an angle of 50° with the normal. What is the speed of light in the transparent material? (c = 3.0 × 108 m/s) Provide the answer: x 108 m/sarrow_forwardPhotons with a wavelength of 519 nm in air enter a plate of flint glass with index of refraction n = 1.66. Find the speed, wavelength, and energy of a photon in the glass. (a) speed (in m/s) m/s (b) wavelength (in m) m (c) energy (in J)arrow_forward
- In Figure (a), a beam of light in material 1 is incident on a boundary at an angle of 28° The extent to which the light is bent due to refraction depends, in part, on the index of refraction n2 of material 2. Figure (b) gives the angle of refraction 02 versus n2 for a range of possible n2 values, from n, = 1.36 to n, = 1.94. What is the speed of light in material 1? 38° 28 28 18 na (a) (b) Number i ! Units m/sarrow_forwardA beam of light traveling through a liquid (of index of refraction n1 = 2.11) is incident on a surface at an angle of θ1 = 22° with respect to the normal to the surface. It passes into the second medium and refracts at an angle of θ2 = 30.5° with respect to the normal. Part (a) What is the index of refraction of the second material? Part (b) What is the light's velocity in medium 1, in meters per second? Part (c) What is the light's velocity in medium 2, in meters per second?arrow_forwardProblem 9: A ray of light is incident on an air/water interface. The ray makes an angle of θ1 = 29 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33. Part (a) Choose an expression for the angle (relative to the normal to the surface) for the ray in the water, θ2. Part (b) Numerically, what is the angle in degrees?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON