Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 2P
(a)
To determine
The measured
(b)
To determine
Whether it is necessary to consider the sizes of the Earth and the Moon in the calculation or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
When the sun is either rising or setting and appears to be just on the horizon, it is in fact below the horizon. The explanation for this seeming paradox is that light from the sun bends slightly when entering the earth’s atmosphere, as shown in Fig. Since our perception is based on the idea that light travels in straight lines, we perceive the light to be coming from an apparent position that is an angle d above the sun’s true position. (a) Make the simplifying assumptions that the atmosphere has uniform density, and hence uniform index of refraction n, and extends to a height h above the earth’s surface, at which point it abruptly stops. Show that the angle d is given by as attached. where R = 6378 km is the radius of the earth. (b) Calculate d using n = 1.0003 and h = 20 km. How does this compare to the angular radius of the sun, which is about one quarter of a degree? (In actuality a light ray from the sun bends gradually, not abruptly, since the density and refractive index of the…
Chapter 25: Problem 5: In the year 1178, five monks at Canterbury Cathedral in England observed what appeared to be an asteroid colliding with the moon, causing a red glow in and around it. It is hypothesized that this event created the crater Giordano Bruno, which is right on the edge of the area we can usually see from Earth.
a) How long after the asteroid hit the Moon, which is 3.84 ×10⁵ km away, would the light first arrive on Earth in seconds?
Handwritten
Chapter 35 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 35.4 - Prob. 35.1QQCh. 35.5 - If beam is the incoming beam in Figure 34.10b,...Ch. 35.5 - Light passes from a material with index of...Ch. 35.7 - Prob. 35.4QQCh. 35.8 - Prob. 35.5QQCh. 35 - Prob. 1OQCh. 35 - Prob. 2OQCh. 35 - Prob. 3OQCh. 35 - Prob. 4OQCh. 35 - Prob. 5OQ
Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardThe Apollo 11 astronauts set up a panel of efficient corner- cube retroreflectors on the Moon’s surface (as shown). The speed of light can be found by measuring the time interval required for a laser beam to travel from the Earth, reflect from the panel, and return to the Earth. Assume this interval is measured to be 2.51 s at a station where the Moon is at the zenith and take the center-to-center distance from the Earth to the Moon to be equal to 3.84 × 108 m. (a) What is the measured speed of light? (b) Explain whether it is necessary to consider the sizes of the Earth and the Moon in your calculation.arrow_forwardIn the figure, light from ray A refracts from material 1 (n₁ = 1.73) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.40). (a) What is the value of incident angle BA? (b) If 8A is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle Og? (d) If Og is decreased, does part of the light refract into material 3? OB I ng no 121arrow_forward
- In 1676, the Danish astronomer Ole Roemer had one of those “aha” moments in science. He concluded from accumulated observations of eclipses of Jupiter’s moon at different times of the year that light must travel at finite speed and needed 1300 s to cross the diameter of Earth’s orbit around the Sun. Using 300,000,000 1cm for the diameter of Earth’s orbit, calculate the speed of light based on Roemer’s 1300-s estimate. How does it differ from a modern value for the speed of light?arrow_forwardAs sunlight enters the Earth’s atmosphere, it changes direction due to the small difference between the speeds of light in vacuum and in air. The duration of an optical day is defined as the time interval between the instant when the top of the rising Sun is just visible above the horizon andthe instant when the top of the Sun just disappears below the horizontal plane. The duration of the geometric day is defined as the time interval between the instant a mathematically straight line between an observer and the top of the Sun just clears the horizon and the instant this linejust dips below the horizon. (a) Explain which is longer, an optical day or a geometric day. (b) Find the difference between these two time intervals. Model the Earth’s atmosphere as uniform, with index of refraction 1.000 293, a sharply defined upper surface, and depth 8 614 m. Assume the observer is at the Earth’s equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon.arrow_forwardIn the 1670s, Ole Rømer observed eclipses of the Galilean satellite Io as it is plunged through Jupiter’s shadow once per orbit. He noticed that the time between observed eclipses became shorter as Jupiter came closer to the Earth and longer as Jupiter moved away. Rømer calculated that the eclipses were observed 17 minutes earlier when Jupiter was in opposition compared to when it was close to conjunction. This was attributed by Rømer to the finite speed of light. From Rømer’s data, compute the speed of light, first inAU min−1, and then inm s−1.arrow_forward
- Two light sources of identical strength are placed 10m apart. An object is to be placed at a point P on a line l, parallel to the line joining the light sources and at a distance d meters from it (see the figure). We want to locate P on, so that the intensity of illumination is minimized. We need to use the fact that the intensity of illumination for a single source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. a) Find an expression for the intensity l(x) at the point P. b) If d = 5m, use graphs of l(x) and l'(x) to show that the intensity is minimized when x = 5m, that is, when P is at the midpoint of l. c) If d = 10m, show that the intensity (perhaps surprisingly) is not minimized at the midpoint. d) Somewhere between d = 5m and d = 10m there is a transitional value of d at which the point of minimal illumination abruptly changes. Estimate this value of d by graphical methods. Then find the exact value…arrow_forwardQ. No 06: Show that Î;(cos² – sin² o + 2i sin ø cos ø) = 2h²iº, where o is the azimuthal angle.arrow_forwardEx. 16: The speed of light in air is 3 × 108 m/s and that in diamond is 1.4 × 108 m/s. Find R. I. of diamond.arrow_forward
- Given once SpaceX's StarLink can provide global internet by sending light between satellites in space, what is the expected time delay for a Whatsapp call from Indianapolis to London which is about 6416 km apart? In other words, how long does light need to travel between Indianapolis and London? µs = 1 × 10¬°s, ms = 1 × 10¬³s tdelay = 2.14µs tdelay = 2.14ms %3D tdelay = 214µs O tdelay = 2.14s %3Darrow_forwardDuring the Apollo XI Moon landing, a retroreflecting panel was erected on the Moon's surface. The speed of light can be found by measuring the time it takes a laser beam to travel from Earth, reflect from the panel, and return to Earth. If this interval is found to be 2.51 s, what is the measured speed of light? Take the center-to-center distance from Earth to Moon to be 3.84 x 108 m. Assume that the Moon is directly overhead and do not neglect the sizes of the Earth and Moon. (Assume the radius of the Earth and the Moon are 6380 km and 1740 km .respectively.)... Enter a number. differs from the correct answer by more than 10%. Double check your calculations. m/sarrow_forwardIn the figure, light from ray A refracts from material 1 (n1 = 1.60) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.3). (a) What is the value of incident angle θA? (b) If θA is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle θB? (d) If θB is decreased, does part of the light refract into material 3?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY