Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 72AP
To determine
The angle of incidence of light at air-water interface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ray of light crosses the boundary between some substance with n = 1.61 and air, going from the substance into air. If the angle of incidence is 18◦ what is the angle of refraction?
Calculate to 1decimal.
A light ray traveling in air strikes the surface of a slab of glass at an angle of incidence of 50°, Part of the light is reflected and part is refracted.. Find the angle the refracted ray makes with respect to the normal to the airiglass
interface.
For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).
B
IUS
Paragraph
Arial
10pt
* G自Q
x X, ४ ४
+
ABC
田
日田田国
Í (1} © © O
OWORDS POWERED BY TINY
Sve All Answers
Speand Submit
7 AM
Click Save and Submit to save and submit, Click Save All Answers to save all answers.
R.
W
田
国
A ray of light is incident on an air/water interface. The ray makes an angle of theta= 33 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33.
Numerically, what is the angle in degree?
Chapter 35 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 35.4 - Prob. 35.1QQCh. 35.5 - If beam is the incoming beam in Figure 34.10b,...Ch. 35.5 - Light passes from a material with index of...Ch. 35.7 - Prob. 35.4QQCh. 35.8 - Prob. 35.5QQCh. 35 - Prob. 1OQCh. 35 - Prob. 2OQCh. 35 - Prob. 3OQCh. 35 - Prob. 4OQCh. 35 - Prob. 5OQ
Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardLight traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardWhat happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forward
- A ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forwardA beam of light, in air, is incident at an angle of 66° with respect to the surface of a certain liquid in a bucket. If light travels at 2.3 x 108 m/s in such a liquid, what is the angle of refraction of the beam in the liquid?arrow_forwardA light ray traveling in air is incident on one face of a right angle prism with index of refraction n = 1.50 as shown in the figure below, and the ray follows the path shown in the figure. Assuming θ = 60.5° and the base of the prism is mirrored, determine the angle ϕ made by the outgoing ray with the normal to the right face of the prism.arrow_forward
- A ray of light is incident normally on one of the faces of a prism of index of refraction n = 1.57. The ray emerges out of the prism with an angle of refraction e equal to: 50° nair 1 n a a 20.2° 26.8° 24.0° 22.7° 21.4°arrow_forwardA ray of light is incident on an air/water interface. The ray makes an angle of θ1 = 19 degrees with respect to the normal of the surface. The index of the air is n1 = 1 while water is n2 = 1.33. Part (a) Choose an expression for the angle (relative to the normal to the surface) for the ray in the water, θ2. Part (b) Numerically, what is the angle in degrees? Part (c) Write an expression for the reflection angle ψ, with respect to the surface. Part (d) Numerically, what is this angle in degrees?arrow_forwardA ray of light is incident on a glass prism (n = 1.5) with an angle of incidence 0, = 40°. The ray emerges from the opposite side of the prism with an angle 04. The apex angle of the prism is 60°. The deviation angle, 8, between the incident ray and the emerging ray is then: 60° 0, = 40° Nair =1 38.4° O 51.3° O 21.7° 44.5° 13.8°arrow_forward
- A ray of light crosses the boundary between some substance with n=1.58 and air, going from the substance into air. If the angle of incidence is 17° What is the angle of refraction?arrow_forwardA ray of light strikes a flat block of glass at an incidence angle of 01 = 35.0°. The glass is 2.00 cm thick and has an index of refraction that equals n = 1.75. 'g 2.00 cm (a) What is the angle of refraction, 2, that describes the light ray after it enters the glass from above? (Enter your answer in degrees to at least 2 decimal places.) (b) with what angle of incidence, 03, does the ray approach the interface at the bottom of the glass? (Enter your answer in degrees to at least 2 decimal places.) ° (c) with what angle of refraction, 84, does the ray emerge from the bottom of the glass? (Enter your answer in degrees to at least 1 decimal place.) о (d) The distance d separates the twice-bent ray from the path it would have taken without the glass in the way. What is this distance (in cm)? cm (e) At what speed (in m/s) does the light travel within the glass? m/s (f) How many nanoseconds does the light take to pass through the glass along the angled path shown here? ns (g) Is the travel…arrow_forwardA beam of light traveling in air strikes a slab of transparent material. The incident beam makes an angle of 60° with the normal, and the refracted beam make an angle of 50° with the normal. What is the speed of light in the transparent material? (c = 3.0 × 108 m/s) Provide the answer: x 108 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY