Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 7CQ
To determine
A proposal for the higher efficiency of the periscope.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One technique for measuring the angle of a prism is shown in Figure P22.51. A parallel beam of light isdirected onto the apex of the prism so that the beam reflects from opposite faces of the prism. Show that the angular separation of the two reflected beams is given by B=2A.
The prism in Figure P22.32 is made of glass with an index ofrefraction of 1.64 for blue light and 1.60 for red light. Find(a) δR , the angle of deviation for red light, and (b) δB , theangle of deviation for blue light, if white light is incident onthe prism at an angle of 30.0°.
A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.49, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming that θ = 58.0° and the base of the prism is mirrored, determine the angle made by the outgoing ray with the normal to the right face of the prism.?degrees
Chapter 35 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 35.4 - Prob. 35.1QQCh. 35.5 - If beam is the incoming beam in Figure 34.10b,...Ch. 35.5 - Light passes from a material with index of...Ch. 35.7 - Prob. 35.4QQCh. 35.8 - Prob. 35.5QQCh. 35 - Prob. 1OQCh. 35 - Prob. 2OQCh. 35 - Prob. 3OQCh. 35 - Prob. 4OQCh. 35 - Prob. 5OQ
Ch. 35 - Prob. 6OQCh. 35 - Prob. 7OQCh. 35 - Prob. 8OQCh. 35 - Prob. 9OQCh. 35 - Prob. 10OQCh. 35 - Prob. 11OQCh. 35 - Prob. 12OQCh. 35 - Prob. 13OQCh. 35 - Prob. 14OQCh. 35 - Prob. 15OQCh. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - Prob. 8CQCh. 35 - Prob. 9CQCh. 35 - Prob. 10CQCh. 35 - Prob. 11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Prob. 13CQCh. 35 - Prob. 14CQCh. 35 - Prob. 15CQCh. 35 - Prob. 16CQCh. 35 - Prob. 17CQCh. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - In an experiment to measure the speed of light...Ch. 35 - As a result of his observations, Ole Roemer...Ch. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10PCh. 35 - Prob. 11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 39PCh. 35 - Prob. 40PCh. 35 - Prob. 41PCh. 35 - Prob. 42PCh. 35 - Prob. 43PCh. 35 - Prob. 44PCh. 35 - Assume a transparent rod of diameter d = 2.00 m...Ch. 35 - Consider a light ray traveling between air and a...Ch. 35 - Prob. 47PCh. 35 - Prob. 48PCh. 35 - Prob. 49PCh. 35 - Prob. 50PCh. 35 - Prob. 51APCh. 35 - Prob. 52APCh. 35 - Prob. 53APCh. 35 - Prob. 54APCh. 35 - Prob. 55APCh. 35 - Prob. 56APCh. 35 - Prob. 57APCh. 35 - Prob. 58APCh. 35 - Prob. 59APCh. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 61APCh. 35 - Prob. 62APCh. 35 - Prob. 63APCh. 35 - Prob. 64APCh. 35 - Prob. 65APCh. 35 - Prob. 66APCh. 35 - Prob. 67APCh. 35 - Prob. 68APCh. 35 - Prob. 69APCh. 35 - Prob. 70APCh. 35 - Prob. 71APCh. 35 - Prob. 72APCh. 35 - Prob. 73APCh. 35 - Prob. 74APCh. 35 - Prob. 75APCh. 35 - Prob. 76APCh. 35 - Prob. 77APCh. 35 - Prob. 78APCh. 35 - Prob. 79APCh. 35 - Prob. 80APCh. 35 - Prob. 81CPCh. 35 - Prob. 82CPCh. 35 - Prob. 83CPCh. 35 - Prob. 84CPCh. 35 - Prob. 85CPCh. 35 - Prob. 86CPCh. 35 - Prob. 87CP
Knowledge Booster
Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardCurved glassair interfaces like those observed in an empty shot glass make it possible for total internal reflection to occur at the shot glasss internal surface. Consider a glass cylinder (n = 1.54) with an outer radius of 2.50 cm and an inner radius of 2.00 cm as shown in Figure P38.105. Find the minimum angle i such that there is total internal reflection at the inner surface of the shot glass. FIGURE P38.105 Problems 105 and 106.arrow_forwardConsider a light ray traveling between air and a diamond cut in the shape shown in Figure P22.42. (a) Find the critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and the outside air. (b) Consider the light ray incident normally on the top surface of the diamond as shown in Figure P22.42. Show that the light traveling toward point P in the diamond is totally reflected. (c) If the diamond is immersed in water, find the critical angle at the diamond−water interface. (d) When the diamond is immersed in water, does the light ray entering the top surface in Figure P22.42 undergo total internal reflection at P ? Explain. (e) If the light ray entering the diamond remains vertical as shown in Figure P22.42, which way should the diamond in the water be rotated about an axis perpendicular to the page through 0 so that light will exit the diamond at P ? (f) At what angle of rotation in part (e) will light first exit the diamond at…arrow_forward
- Optical fibers utilize total internal reflection (TIR) to confine and guide light. They are typically used in materials processing as a means of delivering light from a laser source to a processing head. Other applications include telecommunications, spectroscopy, illumination and sensors. A particularly common form of optical fiber is a step-index fiber, shown in Figure 1. Step-index fibers have an inner core made from a material with a refractive index (ncore) that is higher than the surrounding cladding layer (nclad). Within the fiber, a critical angle of incidence (θcrit) exists such that light will reflect off the core/cladding interface by TIR, as opposed to refracting into the fiber cladding. To fulfil the conditions for TIR to occur, the angle of incidence of light launched into the fiber must be less than a certain angle, which is defined as the acceptance angle (θacc). The critical angle for TIR in a given fiber can be calculated on the basis of the refractive indices of…arrow_forwardWhen the light illustrated in Figure P35.21 passes through the glass block, it is shifted laterally by the distance d. Find the time interval required for the light to pass through the glass block, where t = 1.50 cm, n = 1.50, and = 35.0⁰ ps Figure P35.21arrow_forwardLight can travel from air into water. Some possible paths for the light ray in the water are shown in Figure OQ35.7. Which path will the light most likely follow? (a) A (b) B (c) C (d) D (e) Earrow_forward
- The bottom of a glass bottom boat allows tourists to see the coral reefs in Australia. The indices of refraction are as follows: air(n=1), glass(n=1.55), water(n=1.330).If a light ray coming from above hits the glass at an angle of 60.0deg to the normal, what is the refracted angle (deg) inside the water?arrow_forwardA light ray travels through three parallel slabs having different indices of refraction as in Figure CQ22.3. The rays shown are only the refracted rays. Rank the materials according to the size of their indices of refraction, from largest to smallest. Figure CQ22.3 ne 726 "aarrow_forwardProblem 18 18. The reflecting surfaces of two intersecting flat mirrors are at an angle 0 (0° < 0 < 90°) as shown in Figure P35.18. For a light ray that strikes the horizontal mir- ror, show that the emerging ray will intersect the inci- dent ray at an angle B = 180° – 20. Nov or B 90°-Y 90°-a d Mirror 1 I b Mirror 2arrow_forward
- An optician wants to prescribe glasses to an office worker. Since the patient spends much of his time staring at computer screens, he would like his glasses to have an anti-reflective coating that primarily eliminates reflections of blue light (470nm wavelength). If the coating material has an index of refraction n = 1.36 and the glasses lens has an index of refraction n=1.52, what is the thickness of the thinnest possible coating layer that would eliminate blue light reflections?arrow_forwardMultiple-Concept Example 7 and Interactive LearningWare 26.1 provide some helpful background for this problem. The drawing shows a crystalline slab (refractive index 2.099) with a rectangular cross section. A ray of light strikes the slab at an incident angle of A1 = 35.0°, enters the slab, and travels to point P. This slab is surrounded by a fluid with a refractive index n. What is the maximum value of n such that total internal reflection occurs at point P? %3D Number Units the tolerance is +/-2%arrow_forwardThe index of refraction for violet light in silica flint glassis 1.66 and that for red light is 1.62. What is the angulardispersion of visible light passing through an equilateralprism of apex angle 60.0° if the angle of incidence is 50.0°?(See Fig. P22.62.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning