Concept explainers
(a)
To find : the time necessary for P dollars to double (when investment compounded annually).
(a)
Answer to Problem 16E
The time necessary for P dollars to double(Compounded annually) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded annually
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by ln(1.065) on both sides | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 11years for P dollars to double when it is invested at interest rate
(b)
To find : the time necessary for P dollars to double when investment compounded monthly.
(b)
Answer to Problem 16E
The time necessary for P dollars to double(compounded monthly) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded monthly
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 10.6927 years for P dollars to double when it is invested at interest rate
(c)
To find : the time necessary for P dollars to double when investment compounded daily.
(c)
Answer to Problem 16E
The time necessary for P dollars to double (compounded daily) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded daily
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 10.6648 years for P dollars to double when it is invested at interest rate
(d)
To find : the time necessary for P dollars to double when investment compounded continuously.
(d)
Answer to Problem 16E
The time necessary for P dollars to double (compounded continuously) is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 6.5%, and it compounded continuously
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For continuous compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by 0.065 on both sides | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 10.6638 years for P dollars to double when it is invested at interest rate
Chapter 3 Solutions
EBK PRECALCULUS W/LIMITS
- could you explain this pleasethe answer is has sum 1but i dont know how to calculate itarrow_forwardcan you explain why the answer is 1/3arrow_forwardThe position of a particle that moves along the x-axis is defined by x = - 3t^2 + 12^t - 6 f, where t is in seconds. For the time interval t = 0 to t = 3 s, (1) plot the position, velocity, and acceleration as functions of time; (2) calculate the distance traveled; and (3) determine the displacement of the particleshow the graph and write the solution with a penarrow_forward
- The position of a particle that moves along the x-axis is defined by x = - 3t^2 + 12^t - 6 f, where t is in seconds. For the time interval t = 0 to t = 3 s, (1) plot the position, velocity, and acceleration as functions of time; (2) calculate the distance traveled; and (3) determine the displacement of the particleshow the graph and write the solution with a penarrow_forwardThe answer for number 1 is D Could you show me whyarrow_forwardThe path of a particle moving in a straight line is given by s = t^3 - 6t^2+ 9t + 4, where s is in ft and t in seconds. a. Finds and a when v = 0. b. Find s and v when a = 0.show the graph if needed and write the solution with a penarrow_forward
- How would i solve this. More info is that b =1 but it might be better to solve this before making the substitutionarrow_forwardLet m(t) be a continuous function with a domain of all real numbers. The table below shows some of the values of m(t) . Assume the characteristics of this function are represented in the table. t -3 -2 8 11 12 m(t) -7 6 3 -9 0 (a) The point (-3, -7) is on the graph of m(t). Find the corresponding point on the graph of the transformation y = -m(t) + 17. (b) The point (8, 3) is on the graph of m(t). Find the corresponding point on the graph of the transformation y = -m (−t) . 24 (c) Find f(12), if we know that f(t) = |m (t − 1)| f(12) =arrow_forwardSuppose the number of people who register to attend the Tucson Festival of Books can be modeled by P(t) = k(1.1), where t is the number of days since the registration window opened. Assume k is a positive constant. Which of the following represents how long it will take in days for the number of people who register to double? t = In(1.1) In(2) In(2) t = In(1.1) In(1.1) t = t = t = In(2) - In(k) In(2) In(k) + In(1.1) In(2) - In(k) In(1.1)arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning