Concept explainers
(a)
To find : the time necessary for P dollars to double.
(a)

Answer to Problem 15E
The time necessary for P dollars to double is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 10%, and it compounded annually
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by ln(1.1) on both sides | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 7.2725years for P dollars to double when it is invested at interest rate
(b)
To find : the time necessary for P dollars to double.
(b)

Answer to Problem 15E
The time necessary for P dollars to double is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 10%, and it compounded monthly
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 6.9603 years for P dollars to double when it is invested at interest rate
(c)
To find : the time necessary for P dollars to double.
(c)

Answer to Problem 15E
The time necessary for P dollars to double is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 10%, and it compounded daily
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Simplify the expression in the left side of the equation | |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 6.9324 years for P dollars to double when it is invested at interest rate
(d)
To find : the time necessary for P dollars to double.
(d)

Answer to Problem 15E
The time necessary for P dollars to double is
Explanation of Solution
Given information : Amount invested is P dollars, annual rate of interest is 10%, and it compounded continuously
Concept Involved:
Solving for a variable means getting the variable alone in one side of the equation by undoing whatever operation is done to it.
Formula Used:
For periodic compounding, after t years, the balance A in an account with principal P, number of times interest applied per time period n and annual interest rate r (in decimal form) is given by the formula:
Logarithmic property:
Calculation:
Description | Steps |
Substitute the given information in the formula | |
Use symmetric property of equality which states that if a = b then b = a to rewrite the equation |
Calculation (Continued):
Description | Steps |
Divide by | |
Simplifying fraction on both sides | |
Take natural logarithm on both sides | |
Apply the logarithmic rule | |
Divide by 12 on both sides | |
Simplify fraction on both sides of the equation |
Conclusion:
It would take time of 6.9314 years for P dollars to double when it is invested at interest rate
Chapter 3 Solutions
EBK PRECALCULUS W/LIMITS
- 48. f(x) = { 4 x if x < 2 2x 2 if x 2arrow_forwardГ 49. -x+1 if x 1 Answer ->arrow_forwardA Content X MindTap - Cengage Learning x Function Evaluations x + /ui/evo/index.html?elSBN=9780357038406&id=339416021&snapshotld=877369& GE MINDTAP , Limits, and the Derivative ⭑ វា a ANSWEI 16. Refer to the graph of the function f in the following figure. कर्ट AA C 54 -3-2 7 7 Ay 6. S 5. y=f(x) 4 3. 2. 1 -3- 34567 8 00 9 10 a. Find the value of ƒ (7). b. Find the values of x corresponding to the point(s) on the graph of ƒ located at a height of 5 units from the x-axis. c. Find the point on the x-axis at which the graph of ƒ crosses it. What is the value of f (x) at this point? d. Find the domain and range of f. MacBook Pro G Search or type URL + > % Λ & 5 6 7 29 ( 8 9 0arrow_forward
- Morgan F. - C X A Courses MindTap - Cengage Learning Х Domain of Square Roots X + gage.com/static/nb/ui/evo/index.html?elSBN 9780357038406&id=339416021&snapshotld=877369& CENGAGE MINDTAP 2: Functions, Limits, and the Derivative 47. x if x < 0 f(x) = 2x+1 if x 0 Answerarrow_forwardA Content MindTap - Cengage Learning × Function Evaluations * + c/nb/ui/evo/index.html?elSBN 9780357038406&id=339416021&snapshotld=877369& GAGE MINDTAP ions, Limits, and the Derivative 15. Refer to the graph of the function f in the following figure. 6 y = f(x) 5 4+ 3- 2- 1 + 2 -1 3 4 5 6 a. Find the value of ƒ (0). Answer-> b. Find the value of x for which (i) f (x) = 3 and (ii) f (x) = 0. Answer ▾ c. Find the domain of f. Answer + d. Find the range of f. Answer+ MacBook Proarrow_forwardAnswer-> 12. Let g be the function defined by Find g(-2), g(0), g (2), and g (4). - +1 if x <2 g(x) = √√√x-2 if x 2arrow_forward
- 13. Let f be the function defined by Find f (-1), f (0), ƒ (1) and ƒ (2). Answer f(x) = .2 J-x² +3 if x <1 2x²+1 2x²+1 if x ≥ 1arrow_forwardΛ Content Mind Tap - Cengage Learning × Function Evaluations x + c/nb/ui/evo/index.html?elSBN 9780357038406&id=339416021&snapshotld=877369& GAGE MINDTAP ons, Limits, and the Derivative 14. Let f be the function defined by Find f (0), f (1), and f (2). 2+1 x if x 1 if x 1 f(x) = 1 1-xarrow_forwardA Content c/nb/ui/evo/index.html?elSBN 9780357038406&id=339416021&snapshotld=877369& GAGE MINDTAP ons, Limits, and the Derivative 11. Let f be the function defined by Find f (-2), f (0), and f (1). Answer f(x) = [ x² + 1 if x ≤ 0 if x > 0arrow_forward
- Given that 4−4i is a zero, factor the following polynomial function completely. Use the Conjugate Roots Theorem, if applicable. f(x)=x4−5x3−2x2+176x−320arrow_forwardeliminate the parameter to find the cartesian equation of the curve and sketch the graph. On the graph show the direction it takes and the initial and terminal point. Please draw by hand and show how you got to each steparrow_forwardeliminate the parameter to find the cartesian equation of the curve and sketch the graph. On the graph show the direction it takes and the initial and terminal point. Please draw by hand and show how you got to each steparrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





