Concept explainers
a .
To find: is the population of Italy increasing or decreasing.
a .

Answer to Problem 62E
Increasing
Explanation of Solution
Given:
The population P (in millions) of Italy from 2003 through 2015 can be approximated by the model
P=57.59e0.0051t .................. (1)
Where t represents the year, with t=3 corresponding to 2003.
The graph of the equation P=57.59e0.0051t is given below:
By looking at the graph it is clear that the population of Italy increasing.
b.
To find: the populations of Italy in 2003 and 2015.
b.

Answer to Problem 62E
Population of Italy in 2003 is nearly 58.5 million.
Population of Italy in 2015 is nearly 62.2 million.
Explanation of Solution
Given:
The population P (in millions) of Italy from 2003 through 2015 can be approximated by the model
P=57.59e0.0051t .................. (1)
Where t represents the year, with t=3 corresponding to 2003.
The population of Italy in 2003 is found by substituting t=3 in equation (1),
P(3)=57.59e0.0051(3)=57.59e0.0153≈58.5
Thus, population of Italy in 2003 is nearly 58.5 million.
The population of Italy in 2015 is found by substituting t=15 in equation (1),
P(15)=57.59e0.0051(15)=57.59e0.0765≈62.2
Thus, population of Italy in 2015 is nearly 62.2 million.
c.
To find: the populations of Italy in 2020 and 2025.
c.

Answer to Problem 62E
Population of Italy in 2020 is nearly 63.8 million.
Population of Italy in 2025 is nearly 65.4 million.
Explanation of Solution
Given:
The population P (in millions) of Italy from 2003 through 2015 can be approximated by the model
P=57.59e0.0051t .................. (1)
Where t represents the year, with t=3 corresponding to 2003.
The population of Italy in 2020 is found by substituting t=20 in equation (1),
P(20)=57.59e0.0051(20)=57.59e0.102≈63.8
Thus, population of Italy in 2025 is nearly 63.8 million.
The population of Italy in 2025 is found by substituting t=25 in equation (1),
P(25)=57.59e0.0051(25)=57.59e0.1275≈65.4
Thus, population of Italy in 2025 is nearly 65.4 million.
Chapter 3 Solutions
EBK PRECALCULUS W/LIMITS
- 2:21 MM -8 -7 -6 -5 -4 0 5 4 3 2 N -3 -4 +5 +6 5G 100% Identify the function whose graph appears above. f(x) = = tan X 3 ✓ Question Help: ☐ Video ☐ Message instructor Submit Question |||arrow_forward4 3. 2. 1 0 Π 元 -1 3 x -53. 5π 2π The graph of the function y = f(x) is shown in the xy-plane. Which of the following is the graph of the polar function r = f(e) in the polar coordinate system? A B Polar axis Polar axis Polar axis Polar axisarrow_forward٣:٥٣ النموذج الاول . . . O O O بشما ند الحمر الحمر الجمهورية الجنية وزارة التربية والتعليم اليوم التاريخ اللجنة العليا للاختبارات الزمن اختبار مادة الجبر والهندسة لجنة المطابع السرية المركزية للشهادة الثانوية العامة (القسم العلمي) الفترة %97 (1) ظلل في ورقة الإجابة الدائرة التي تحتوي على الحرف ( ص ) للإجابة الصحيحة والحرف ( خ ) للإجابة الخطأ بحسب رقم الفقرة لكل مما يأتي ( درجة لكل فقرة ) )1 ) 2 ) 3 ) 4 ) بؤرة القطع س" = ١٢ ص هي ( ۲ ) طول المحور الأصغر للقطع ٩ س + ص = ٩ يساوي 6 وحدات طول . ) إذا كان & عدد مركب ، 181 + 11 = ٦ ، فإن ١١ = ٣ . ) إذا كان م + ۳ ت = ۲ + ت ب م ، ب دع ، فإن م + ب = 5 ( ) إذا كان & = ۱ + ٣ ت ، فإن ٠ = ١٠ . 6 ( - ) إذا كان ٥٠ - ٣ - ١٢٠ ٤ - ٣ ، فإن قيمة ٧ = ٥ . 1 ) = N ) إذا كان ح هو الحد الخالي من س في المفكوك ( س + v. N 8 ( ( قيمة المقدار , = + ۱ ، * . . + ، فإن قيمة ٧ = ١٦ . ۱ + 9 ( ) المستقيمان المقاربان للقطع الذي معادلته س" = ١ هما ص = : ۹ 10 ( ) إذا كان ٥ + س = ٢٤ ، فإن قيمة س = - 1 س 11 ( ) إذا كانت النسبة بين الحدين الأوسطين تساوي 9 في المفكوك ( س + - ) ،…arrow_forward
- الاسم يمنع استخدام الآلة الحاسبة ظلل في ورقة الإجابة الدائرة التي تحتوي على الحرف (ص) للإجابة الصحيحة والحرف (خ) للإجابة الخطأ بحسب رقم الفقرة لكل مما يأتي: درجة لكل فقرة. ( ) نها جا 元 جتا = صفر س ۱ س س -۱ ( ) يمكن إعادة تعريف الدالة د(س) = س قاس لكي تكون متصلة عند س = 7 ( ) إذا كانت د(س) = (٢) س - س ) ؛ فإن د(١) = ٦ ٢ س ص ( ) إذا كانت س + 0= ؛ فإن عند ) - ١ ، - ٦ ) تساوي (٦) ( ) إذا كانت د(س) = س ه ، و (س) = ٣ س ٢ + ٢ س ؛ فإن ( د ) (۱) = ۸ ) ( معادلة ناظم الدالة ص = د(س) عند النقطة ) ( ، د (۲)) هي ص - (د (م) - - د (۲) ( س - م ) ( ) إذا كانت ص = ظتا٢ س ؛ فإن ص = ٢ ص قتا ٢س ) ( إذا كانت د(س) = س ؛ فإن د (T) = جتاس 1- T ( ) إذا كانت د(س) = 1 - جناس جاس ؛ فإن د () = - 1 ( ) إذا كانت الدالة د (س) تحقق شروط مبرهنة القيمة المتوسطة على [ ، ب ] ، فإنه يوجد جـ ] ، ب [ بحيث (جـ) = (P) + (~)- - ب + P 1 2 3 4 5 6 7 8 9 10 11 ( ) للدالة د(س) = لو ( س ) + (٣) نقطة حرجة عند س = . ( ) إذا كان س = - ٢ مقارباً رأسياً للدالة د(س) 12 10 13 14 15 16 17 س = لو|س | + ث - = ۲ س + ٣ ب س + ٤ ، فإن معادلة…arrow_forward2. Symmetry Evaluate the following integrals using symmetry argu- ments. Let R = {(x, y): -a ≤ x ≤ a, −b ≤ y ≤ b}, where a and b are positive real numbers. a. SS Sf xye xye¯(x² + y²) dA R b. C sin (x − y) - dA x² + y² + 1 Rarrow_forwardChoose a convenient order When converted to an iterated integral, the following double integrals are easier to evaluate in one order please show all stepsarrow_forward
- The graph of f' is below. Use it to determine where the local minima and maxima for f are. If there are multiple answers, separate with commas. 2 f'(x) N -5 -4 3-2-1 -1 -2 -3 -4 12 3 4 5 -x Local minima at x Local maxima at xarrow_forwardThe graph of f' is below. Use it to determine the intervals where f is increasing. -5-4-32 4- 3 2 1 -2 -3 +x 2 3 4 5arrow_forwardThe graph of f' is below. Use it to determine where the inflection points are and the intervals where f is concave up and concave down. If there are multiple inflection points, separate with a comma. 6 5 4 3 2 1 f'(x) +x -6-5-4-3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 -5 -6+ Inflection point(s) at x = Concave up: Concave down:arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





