
Given Program:
The program given in the textbook is given here with comments for better understanding.
File Name: TaxReturn.java
// Class definition
public class TaxReturn
{
// Declare and initialize the required variables
public static final int SINGLE = 1;
public static final int MARRIED = 2;
private static final double RATE1 = 0.10;
private static final double RATE2 = 0.25;
private static final double RATE1_SINGLE_LIMIT = 32000;
private static final double RATE1_MARRIED_LIMIT = 64000;
private double income;
private int status;
/*Constructs a TaxReturn object for a given income and marital status.
@param anIncome the taxpayer income
@param aStatus either SINGLE or MARRIED */
// Method definition
public TaxReturn(double anIncome, int aStatus)
{
income = anIncome;
status = aStatus;
}
// Method definition
public double getTax()
{
// Declare and initialize the required variables
double tax1 = 0;
double tax2 = 0;
/* If the entered status is "Single", compute income tax based on their income */
if (status == SINGLE)
{
/* Check whether the income is less than or equal to $32000 */
if (income <= RATE1_SINGLE_LIMIT)
{
// If it is, compute the tax
tax1 = RATE1 * income;
}
/* If the income is greater than or equal to $32000, compute the tax */
else
{
tax1 = RATE1 * RATE1_SINGLE_LIMIT;
tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
}
}
/* If the entered status is "Married", compute income tax based on their income */
else
{
/* Check whether the income is less than or equal to $64000 */
if (income <= RATE1_MARRIED_LIMIT)
{
// If it is, compute the tax
tax1 = RATE1 * income;
}
/* If the income is greater than or equal to $64000, compute the tax */
else
{
tax1 = RATE1 * RATE1_MARRIED_LIMIT;
tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT);
}
}
// Return the tax to the main function
return tax1 + tax2;
}
}
File Name: TaxCalculator.java
// Import the required package
import java.util.Scanner;
/**
This program calculates a simple tax return.
*/
// Class definition
public class TaxCalculator
{
// Main class declaration
public static void main(String[] args)
{
// Create an object for scanner class
Scanner in = new Scanner(System.in);
// Prompt the user to enter the income
System.out.print("Please enter your income: ");
// Store the entered income in the variable
double income = in.nextDouble();
// Prompt the user to enter marital status
System.out.print("Are you married? (Y/N) ");
// Store the entered value in a variable
String input = in.next();
// Declare the variable
int status;
/* Check whether the user input value for marital status is "Y" */
if (input.equals("Y"))
{
/* If it is "Y", store the taxreturn value for a married person in the variable */
status = TaxReturn.MARRIED;
}
/* Check whether the user input value for marital status is "N" */
else
{
/* If it is "N", store the taxreturn value for a single person in the variable */
status = TaxReturn.SINGLE;
}
// Create an object for TaxReturn class
TaxReturn aTaxReturn = new TaxReturn(income, status);
// Display the tax return value based on the user input
System.out.println("Tax: "
+ aTaxReturn.getTax());
}
}

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
Big Java Late Objects
- Create 6 users: Don, Liz, Shamir, Jose, Kate, and Sal. Create 2 groups: marketing and research. Add Shamir, Jose, and Kate to the marketing group. Add Don, Liz, and Sal to the research group. Create a shared directory for each group. Create two files to put into each directory: spreadsheetJanuary.txt meetingNotes.txt Assign access permissions to the directories: Groups should have Read+Write access Leave owner permissions as they are “Everyone else” should not have any access Submit for grade: Screenshot of /etc/passwd contents showing your new users Screenshot of /etc/group contents showing new groups with their members Screenshot of shared directories you created with files and permissionsarrow_forward⚫ your circuit diagrams for your basic bricks, such as AND, OR, XOR gates and 1 bit multiplexers, ⚫ your circuit diagrams for your extended full adder, designed in Section 1 and ⚫ your circuit diagrams for your 8-bit arithmetical-logical unit, designed in Section 2. 1 An Extended Full Adder In this Section, we are going to design an extended full adder circuit (EFA). That EFA takes 6 one bit inputs: aj, bj, Cin, Tin, t₁ and to. Depending on the four possible combinations of values on t₁ and to, the EFA produces 3 one bit outputs: sj, Cout and rout. The EFA can be specified in principle by a truth table with 26 = 64 entries and 3 outputs. However, as the EFA ignores certain inputs in certain cases, it is easier to work with the following overview specification, depending only on t₁ and to in the first place: t₁ to Description 00 Output Relationship Ignored Inputs Addition Mode 2 Coutsjaj + bj + Cin, Tout= 0 Tin 0 1 Shift Left Mode Sj = Cin, Cout=bj, rout = 0 rin, aj 10 1 1 Shift Right…arrow_forwardShow the correct stereochemistry when needed!! mechanism: mechanism: Show the correct stereochemistry when needed!! Br NaOPh diethyl ether substitutionarrow_forward
- In javaarrow_forwardKeanPerson #keanld:int #keanEmail:String #firstName:String #lastName: String KeanAlumni -yearOfGraduation: int - employmentStatus: String + KeanPerson() + KeanPerson(keanld: int, keanEmail: String, firstName: String, lastName: String) + getKeanld(): int + getKeanEmail(): String +getFirstName(): String + getLastName(): String + setFirstName(firstName: String): void + setLastName(lastName: String): void +toString(): String +getParkingRate(): double + KeanAlumni() + KeanAlumni(keanld: int, keanEmail: String, firstName: String, lastName: String, yearOfGraduation: int, employmentStatus: String) +getYearOfGraduation(): int + setYearOfGraduation(yearOfGraduation: int): void +toString(): String +getParkingRate(): double In this question, write Java code to Create and Test the superclass: Abstract KeanPerson and a subclass of the KeanPerson: KeanAlumni. Task 1: Implement Abstract Class KeanPerson using UML (10 points) • Four data fields • Two constructors (1 default and 1 constructor with all…arrow_forwardPlz correct answer by best experts...??arrow_forward
- Q3) using the following image matrix a- b- 12345 6 7 8 9 10 11 12 13 14 15 1617181920 21 22 23 24 25 Using direct chaotic one dimension method to convert the plain text to stego text (hello ahmed)? Using direct chaotic two-dimension method to convert the plain text to stego text?arrow_forward: The Multithreaded Cook In this lab, we'll practice multithreading. Using Semaphores for synchronization, implement a multithreaded cook that performs the following recipe, with each task being contained in a single Thread: 1. Task 1: Cut onions. a. Waits for none. b. Signals Task 4 2. Task 2: Mince meat. a. Waits for none b. Signals Task 4 3. Task 3: Slice aubergines. a. Waits for none b. Signals Task 6 4. Task 4: Make sauce. a. Waits for Task 1, and 2 b. Signals Task 6 5. Task 5: Finished Bechamel. a. Waits for none b. Signals Task 7 6. Task 6: Layout the layers. a. Waits for Task 3, and 4 b. Signals Task 7 7. Task 7: Put Bechamel and Cheese. a. Waits for Task 5, and 6 b. Signals Task 9 8. Task 8: Turn on oven. a. Waits for none b. Signals Task 9 9. Task 9: Cook. a. Waits for Task 7, and 8 b. Signals none At the start of each task (once all Semaphores have been acquired), print out a string of the task you are starting, sleep for 2-11 seconds, then print out a string saying that you…arrow_forwardProgramming Problems 9.28 Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./addresses 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well. Programming Projects Contiguous Memory Allocation In Section 9.2, we presented different algorithms for contiguous memory allo- cation. This project will involve managing a contiguous region of memory of size MAX where addresses may range from 0 ... MAX - 1. Your program must respond to four different requests: 1. Request for a contiguous block of memory 2. Release of a contiguous block of memory 3. Compact unused holes of memory into one single block 4.…arrow_forward
- using r languagearrow_forwardProgramming Problems 9.28 Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./addresses 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well. Programming Projects Contiguous Memory Allocation In Section 9.2, we presented different algorithms for contiguous memory allo- cation. This project will involve managing a contiguous region of memory of size MAX where addresses may range from 0 ... MAX - 1. Your program must respond to four different requests: 1. Request for a contiguous block of memory 2. Release of a contiguous block of memory 3. Compact unused holes of memory into one single block 4.…arrow_forwardusing r languagearrow_forward
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781305480537Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr




