Organic Chemistry
Organic Chemistry
9th Edition
ISBN: 9781305080485
Author: John E. McMurry
Publisher: Cengage Learning
Question
Book Icon
Chapter 31.SE, Problem 19MP
Interpretation Introduction

a)

Interpretation:

Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the polymer containing three monomer units and draw the structure of PDCPD.

Concept introduction:

In this process, the addition polymerization takes place. Addition polymerization is also known as chain growth polymerization.

In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.

The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (alkenes) by exchanging their substituents on their double bonds.

The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.

Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.

Interpretation Introduction

b)

Interpretation:

Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the polymer containing three monomer units and draw the structure of PDCPD.

Concept introduction:

In this process, the addition polymerization takes place. Addition polymerization is also known as chain growth polymerization.

In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.

The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (alkenes) by exchanging their substituents on their double bonds.

The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.

Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.

Interpretation Introduction

c)

Interpretation:

Show the mechanism of the formation of dicyclopentadiene from cyclopentadiene, draw the representative unit of the polymer containing three monomer units and draw the structure of PDCPD.

Concept introduction:

In this process, the addition polymerization takes place. Addition polymerization is also known as chain growth polymerization.

In this process, an initiator is added to the reaction mixture. This initiator gets added to the carbon-carbon double bond and yields a reactive monomer (intermediate). This reactive intermediate reacts with the monomer and this process keeps on repeating to give rise to the final polymeric product.

The formation of PDCPD is taking place by ROMP (ring opening metathesis polymerization), an olefin metathesis reaction can be stated as the reaction between two molecules (alkenes) by exchanging their substituents on their double bonds.

The catalyst used for olefin metathesis polymerization is Grubb’s catalyst (it contain a carbon-metal double bond and have a genral structure as M=CH-R. The function of Grubb’s catalyst is to react reversibly with an alkene to form a four membered cyclic compound knowa as metallacycle. Here, “M” is Ru i.e. ruthenium.

Metallacycle opens up in the next step to give rise to different alkene and a different catalyst.

Blurred answer
Students have asked these similar questions
Predict the major products of the following organic reaction: + Δ A ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Priva
esc 2 Incorrect Feedback: Your answer is incorrect. Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? A O • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. . If your answer is no, check the box under the drawing area instead. Check F1 ! @ X C Save For Later Submit Assignment 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility 80 et A ད 1 4 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 # $ 45 % A 6 87 & * 8 9 ) 0 + ||
Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ?A Δ O • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilit ku F11
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
  • Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning