
Concept explainers
(a)
Find the maximum shearing stress
(a)

Answer to Problem 138P
The maximum shearing stress
Explanation of Solution
Given information:
The length of the steel member (L) is
The provided section of the member is
The torque in the member (T) is
The modulus rigidity of the steel (G) is
Assume the angle of twist in flange and web is equal.
Calculation:
Consider flange:
Refer Appendix C, “Properties of Rolled-Steel shapes”.
The width of the flange (a) is
The thickness of the flange (b) is
Calculate the ratio of width to thickness of the steel
Substitute
Hence, the ratio of
Calculate the ratio of thickness to width of the steel
Substitute
Calculate the coefficient for rectangular bar
Substitute 0.0544 for
Calculate the angle of twist in flange
Here,
Substitute 0.32191 for
Consider web:
Refer Appendix C, “Properties of Rolled-Steel shapes”.
The thickness of the web (b) is
The depth of the member (D) is
Calculate the width of the web (a) using the formula:
Here,
Substitute
Calculate the ratio of width to thickness of the steel
Substitute
Hence, the ratio of
Calculate the ratio of thickness to width of the steel
Substitute
Calculate the coefficient for rectangular bar
Substitute 0.039972 for
Calculate the angle of twist in web
Substitute 0.32494 for
Since the angle of twist in flange and web is equal, therefore,
Substitute
By taking the sum of torque exerted on two flanges and web in the member is equal to the total torque T applied to member. Therefore,
Substitute
Substitute
Calculate the maximum shearing stress
Substitute
Therefore, maximum shearing stress
(b)
Find the maximum shearing stress
(b)

Answer to Problem 138P
The maximum shearing stress
Explanation of Solution
Given information:
The length of the steel member (L) is
The provided section of the member is
The torque in the member (T) is
The modulus rigidity of the steel (G) is
Assume the angle of twist in flange and web is equal.
Calculation:
Calculate the torque in the web
Substitute
The maximum shearing stress
(c)
Find the angle
(c)

Answer to Problem 138P
The angle
Explanation of Solution
Given information:
The length of the steel member (L) is
The provided section of the member is
The torque in the member (T) is
The modulus rigidity of the steel (G) is
Assume the angle of twist in flange and web is equal.
Calculation:
From the above calculation of angle of twist, take the critical angle to compute the angle of twist.
Calculate the angle of twist
Consider the torque equation,
Substitute
Assume
Calculate the value of
Substitute 0.32191 for
Calculate the value of
Substitute 0.32494 for
Find the angle of twist:
Substitute
Therefore, the angle of twist of the section is
Want to see more full solutions like this?
Chapter 3 Solutions
Mechanics of Materials, 7th Edition
- Please sovle this for me and please don't use aiarrow_forwardPlease sovle this for me and please don't use aiarrow_forward3. The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 28 kN in compression to 28 kN in tension. Estimate the fatigue factor of safety based on achieving infinite life (using Goodman line) and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 25 mm + 6-mm D. 10 mmarrow_forward
- CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE 1. The truss shown is supported by hinge at A and cable at E.Given: H = 4m, S = 1.5 m, α = 75⁰, θ = 33⁰.Allowable tensile stress in cable = 64 MPa.Allowable compressive stress in all members = 120 MPaAllowable tensile stress in all members = 180 MPa1.Calculate the maximum permissible P, in kN, if the diameter of the cable is 20 mm.2.If P = 40 kN, calculate the required area (mm2) of member BC.3. If members have solid square section, with dimension 15 mm, calculate the maximum permissible P (kN) based on the allowable strength of member HI.ANSWERS: (1) 45.6 kN; (2) 83.71 mm2; (3) 171.76 kNarrow_forwardCORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE 2: A wire 4 meters long is stretched horizontally between points 4 meters apart. The wire is 25 mm2 in cross-section with a modulus of elasticity of 200 GPa. A load W placed at the center of the wire produces a sag Δ.1.Calculate the tension (N) in the wire if sag Δ = 30 mm.2.Calculate the magnitude of W, in N, if sag Δ = 54.3 mm.3. If W is 60 N, what is the sag (in mm)?ANSWERS: (1) 562 N, (2) 100 N, (3) 45.8 Narrow_forwardCORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE 4 : A cable and pulley system at D is used to bring a 230-kg pole (ACB) to a vertical position as shown. The cable has tensile force T and is attached at C. The length of the pole is 6.0 m, the outer diameter is d = 140 mm, and the wall thickness t = 12 mm. The pole pivots about a pin at A. The allowable shear stress in the pin is 60 MPa and the allowable bearing stress is 90 MPa. The diameter of the cable is 8 mm.1.Find the minimum diameter (mm) of the pin at A to support the weight of the pole in the position shown.2.Calculate the elongation (mm) of the cable CD.3.Calculate the vertical displacement of point C, in mm.ANSWERS: (1) 6 mm, (2) 1.186 mm, (3) 1.337 mm--arrow_forward
- 1. Derive an expression for H(w) filter or bandpass/reject filter. = for the circuit below. Qualitatively determine if it's a high/lowpass L ell R ww Voarrow_forward2. Obtain the transfer function, H(w) = 0 for the circuit below for R₁ = 1 kQ2, R2 = 10 kQ, and Vi C = 1 μF. What role, if any, does the capacitor play? Explain. R₁ R2 + C + Voarrow_forwardCORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE 3 (15 points): A 12-meter-long precast pile segment is to be lifted from a trailer down to the ground and then set in place prior to driving by a crane.1. If two slings are to be used in lifting the pile to the ground, at what distance from the ends must the slings be placed for minimum bending due to its own weight?2. At what distance from the ends must the slings be placed for minimum shear due to its own weight?3. Using one sling to set the pile in a vertical position before driving at what distance from one end must the sling be placed for minimum bending due to its own weight?ANSWERS: (1) 2.48 m, (2) 3.00 m, (3) 3.51 marrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





