Concept explainers
(a)
Interpretation:
The structural formula for the given phenol has to be drawn.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
By considering the way the phenol is named, the structure can be drawn if the name is given.
(b)
Interpretation:
The structural formula for the given phenol has to be drawn.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
By considering the way the phenol is named, the structure can be drawn if the name is given.
(c)
Interpretation:
The structural formula for the given phenol has to be drawn.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
By considering the way the phenol is named, the structure can be drawn if the name is given.
(d)
Interpretation:
The structural formula for the given phenol has to be drawn.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
By considering the way the phenol is named, the structure can be drawn if the name is given.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Identify and provide a concise explanation of the concept of signal-to-noise ratio (SNR) in the context of chemical analysis. Provide specific examples.arrow_forwardIdentify and provide a concise explanation of a specific analytical instrument capable of detecting and quantifying trace compounds in food samples. Emphasise the instrumental capabilities relevant to trace compound analysis in the nominated food. Include the specific application name (eg: identification and quantification of mercury in salmon), outline a brief description of sample preparation procedures, and provide a summary of the obtained results from the analytical process.arrow_forwardIdentify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward
- 5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forwardState the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardState the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forward
- Provide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardGiven a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forward
- The molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forwardIn GC, what order will the following molecules elute from the column? CH3OCH3, CH3CH2OH, C3H8, C4H10arrow_forwardBeer’s Law is A = εbc, where A is absorbance, ε is the molar absorptivity (which is specific to the compound and wavelength in the measurement), and c is concentration. The absorbance of a 2.31 × 10-5 M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm.arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,





