
Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.5.11P
-11 A solid steel bar (G = 11.8 X 106 psi ) of diameter d = 2,0 in. is subjected to torques T = 8.0 kip-in. acting in the directions shown in the figure.
- Determine the maximum shear, tensile, and compressive stresses in the bar and show these stresses on sketches of properly oriented stress elements.
Determine the corresponding maximum strains (shear, tensile, and compressive) in the bar and show these strains on sketches of the deformed elements.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The design of the gear-and-shaft system shown requires that steel shafts of the
same diameter be used for both AB and CD. It is further required that the angle
D through which end D of shaft CD rotates not exceed 1.5°. Knowing that G =
77.2 GPa, determine the required diameter of the shafts.
40 mm
400 mm
100 mm
600 mm
T-1000 N-m
D
Assume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 Hz
13.44 The end of a cylindrical liquid cryogenic propellant
tank in free space is to be protected from external
(solar) radiation by placing a thin metallic shield in
front of the tank. Assume the view factor Fts between
the tank and the shield is unity; all surfaces are diffuse
and gray, and the surroundings are at 0 K.
Tank
T₁
Shield, T
T₁ = 100 K
E1
Solar
irradiation
Gs
ε₁ = ε₂ = 0.05
ε₁ = 0.10
Gs = 1250 W/m²
E2
Find the temperature of the shield T, and the heat flux
(W/m²) to the end of the tank.
Chapter 3 Solutions
Mechanics of Materials (MindTap Course List)
Ch. 3 - A circular tube is subjected to torque Tat its...Ch. 3 - -2. A plastic bar of diameter d = 56 mm is to be...Ch. 3 - A copper rod of length L = 18.0 in. is to be...Ch. 3 - A circular steel tube of length L = 1.0 m is...Ch. 3 - Solve the preceding problem if the length L = 56...Ch. 3 - A circular aluminum tube subjected to pure torsion...Ch. 3 - A solid steel bar of circular cross section has...Ch. 3 - A solid copper bar of circular cross section has...Ch. 3 - Repeat Problem 3.3-1, but now use a circular tube...Ch. 3 - A copper tube with circular cross section has...
Ch. 3 - A prospector uses a hand-powered winch (see...Ch. 3 - When drilling a hole in a table leg, a furniture...Ch. 3 - While removing a wheel to change a tire, a driver...Ch. 3 - -8 An aluminum bar of solid circular cross section...Ch. 3 - A high-strength steel drill rod used for boring a...Ch. 3 - The steel shaft of a socket wrench has a diameter...Ch. 3 - A circular tube of aluminum is subjected to...Ch. 3 - A propeller shaft for a small yacht is made of a...Ch. 3 - Three identical circular disks A, B, and Care...Ch. 3 - The steel axle of a large winch on an ocean liner...Ch. 3 - A hollow steel shaft used in a construction auger...Ch. 3 - Solve the preceding problem if the shaft has an...Ch. 3 - A vertical pole of solid, circular cross section...Ch. 3 - A vertical pole of solid, circular cross section...Ch. 3 - A solid brass bar of diameter d = 1.25 in. is...Ch. 3 - A hollow aluminum tube used in a roof structure...Ch. 3 - A circular tube of inner radius r1and outer radius...Ch. 3 - .1 A stepped shaft ABC consisting of two solid...Ch. 3 - A circular tube of outer diameter d3= 70 mm and...Ch. 3 - A stepped shaft ABCD consisting of solid circular...Ch. 3 - A solid, circular bar ABC consists of two...Ch. 3 - A hollow tube ABCDE constructed of monel metal is...Ch. 3 - A shaft with a solid, circular cross section...Ch. 3 - Prob. 3.4.7PCh. 3 - Two sections of steel drill pipe, joined by bolted...Ch. 3 - Prob. 3.4.9PCh. 3 - -10. A tapered bar AB with a solid circular cross...Ch. 3 - A tapered bar AB with a solid circular cross...Ch. 3 - The bar shown in the figure is tapered linearly...Ch. 3 - The non prismatic, cantilever circular bar shown...Ch. 3 - A uniformly tapered tube AB with a hollow circular...Ch. 3 - A uniformly tapered aluminum-alloy tube AB with a...Ch. 3 - For the thin nonprismatic steel pipe of constant...Ch. 3 - .17 A mountain-bike rider going uphill applies...Ch. 3 - A prismatic bar AB of length L and solid circular...Ch. 3 - A prismatic bar AB with a solid circular cross...Ch. 3 - A magnesium-alloy wire of diameter d = 4mm and...Ch. 3 - A nonprismatic bar ABC with a solid circular cross...Ch. 3 - -22 Two tubes (AB, BC) of the same material arc...Ch. 3 - A circular copper bar with diameter d = 3 in. is...Ch. 3 - A circular steel tube with an outer diameter of 75...Ch. 3 - A hollow aluminum shaft (see figure) has an...Ch. 3 - A hollow steel bar (G = 80 GPa ) is twisted by...Ch. 3 - A tubular bar with outside diameterd2= 4.0 in, is...Ch. 3 - A solid circular bar of diameter d = 50 mm (see...Ch. 3 - -7 A steel tube (G = 11.5 x 106 psi) has an outer...Ch. 3 - A solid circular bar of steel (G = 78 GPa)...Ch. 3 - The normal strain in the 45n direction on the...Ch. 3 - An aluminum tube has inside diameter dx= 50 mm,...Ch. 3 - -11 A solid steel bar (G = 11.8 X 106 psi ) of...Ch. 3 - A solid aluminum bar (G = 27 GPa ) of diameter d =...Ch. 3 - Two circular aluminum pipes of equal length L = 24...Ch. 3 - A generator shaft in a small hydroelectric plant...Ch. 3 - A motor drives a shaft at 12 Hz and delivers 20 kW...Ch. 3 - A motor driving a solid circular steel shaft with...Ch. 3 - Prob. 3.7.4PCh. 3 - The propeller shaft of a large ship has an outside...Ch. 3 - The drive shaft for a truck (outer diameter 60 mm...Ch. 3 - A hollow circular shaft for use in a pumping...Ch. 3 - A tubular shaft being designed for use on a...Ch. 3 - A propeller shaft of solid circular cross section...Ch. 3 - What is the maximum power that can be delivered by...Ch. 3 - A motor delivers 275 hp at 1000 rpm to the end of...Ch. 3 - Prob. 3.7.12PCh. 3 - A solid circular bar ABCD with fixed supports is...Ch. 3 - A solid circular bar A BCD with fixed supports at...Ch. 3 - A solid circular shaft AB of diameter d is fixed...Ch. 3 - A ho 1 low st e el shaft ACB of outside diameter...Ch. 3 - A stepped shaft ACB having solid circular cross...Ch. 3 - A stepped shaft ACB having solid circular cross...Ch. 3 - A stepped shaft ACE is held against rotation at...Ch. 3 - A solid circulai' aluminum bar AB is fixed at both...Ch. 3 - Two sections of steel drill pipe, joined by bolted...Ch. 3 - A circular bar AB of length L is fixed against...Ch. 3 - A circular bar AB with ends fixed against rotation...Ch. 3 - A solid steel bar of diameter d1= 25.0 mm is...Ch. 3 - A solid steel bar of diameter d1= 1.50 in. is...Ch. 3 - The composite shaft shown in the figure is...Ch. 3 - The composite shaft shown in the figure is...Ch. 3 - A steel shaft (Gs= 80 GPa) of total length L = 3.0...Ch. 3 - A uniformly tapered aluminum-ally tube AB of...Ch. 3 - Two pipes {L, = 2.5 m and L, = 1.5 m) are joined...Ch. 3 - A solid circular bar of steel (G = 1L4 × 106 psi)...Ch. 3 - A solid circular bar of copper (G = 45 GPa) with...Ch. 3 - A stepped shaft of solid circular cross sections...Ch. 3 - A stepped shaft of solid circular cross sections...Ch. 3 - A circular tube AB is fixed at one end and free at...Ch. 3 - A cantilever bar of circular cross section and...Ch. 3 - Obtain a formula for the strain energy U of the...Ch. 3 - A statically indeterminate stepped shaft ACE is...Ch. 3 - Derive a formula for the strain energy U of the...Ch. 3 - A thin-walled hollow tube AB of conical shape has...Ch. 3 - A hollow circular tube A fits over the end of a...Ch. 3 - A heavy flywheel rotating at n revolutions per...Ch. 3 - A hollow circular tube having an inside diameter...Ch. 3 - A solid circular bar having diameter d is to be...Ch. 3 - A thin-walled aluminum tube of rectangular cross...Ch. 3 - A thin-walled steel tube of rectangular cross...Ch. 3 - A square tube section has side dimension of 20 in....Ch. 3 - A thin-walled circular tube and a solid circular...Ch. 3 - A thin-walled steel tube having an elliptical...Ch. 3 - Calculate the shear stress and the angle of twist...Ch. 3 - A torque T is applied to a thin-walled tube having...Ch. 3 - Compare the angle of twist 1 for a thin-walled...Ch. 3 - A tubular aluminum bar (G = 4 × 106 psi) of square...Ch. 3 - A thin tubular shaft with a circular cross section...Ch. 3 - A thin-walled rectangular tube has uniform...Ch. 3 - A long, thin-walled tapered tube AB with a...Ch. 3 - A stepped shaft consisting of solid circular...Ch. 3 - A stepped shaft with diameters D1= 40 mm and D2=...Ch. 3 - A full quarter-circular fillet is used at the...Ch. 3 - The stepped shaft shown in the figure is required...Ch. 3 - A stepped shaft (see figure) has diameter D2= 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- question 664 thank youarrow_forward13.38 Consider the attic of a home located in a hot climate. The floor of the attic is characterized by a width of L₁ = 8 m while the roof makes an angle of 0 = 30° from the horizontal direction, as shown in the schematic. The homeowner wishes to reduce the heat load to the home by adhering bright aluminum foil (ε = 0.07) onto the surfaces of the attic space. Prior to installation of the foil, the surfaces are of emissivity & = 0.90. Attic A2, 82, T2 0 = 30° A1, E1, T₁ 土 L₁ = 8 m (a) Consider installation on the bottom of the attic roof only. Determine the ratio of the radiation heat transfer after to before the installation of the foil. (b) Determine the ratio of the radiation heat transfer after to before installation if the foil is installed only on the top of the attic floor. (c) Determine the ratio of the radiation heat transfer if the foil is installed on both the roof bottom and the floor top.arrow_forward13.1 Determine F2 and F2 for the following configura- tions using the reciprocity theorem and other basic shape factor relations. Do not use tables or charts. (a) Small sphere of area A, under a concentric hemi- sphere of area A₂ = 3A₁ A₂ A1 (a) (b) Long duct. Also, what is F₁₂? A₂ Αν (b) (c) Long inclined plates (point B is directly above the center of A₁) B 100 mm A₂ - 220 mm (c) (d) Long cylinder lying on infinite plane + A₁ Az (d) (e) Hemisphere-disk arrangement -A₂, hemisphere, diameter D A₂ A₁, disk, diameter D/2 (e) (f) Long, open channel 1 m AA₂ 2 m (f) (g) Long cylinders with A₁ = 4A₁. Also, what is F₁₂? -D₁ A1 -A₂ -D2 (e) (h) Long, square rod in a long cylinder. Also, what is F22? w=D/5 18 A₁ -A2 (h) -Darrow_forward
- 13.9 Determine the shape factor, F12, for the rectangles shown. 6 m 1 3 m 6 m 1 m 2 6 m 1 0.5 m 2 1 m (a) Perpendicular rectangles without a common edge. -1 m. (b) Parallel rectangles of unequal areas.arrow_forwardI keep getting the wrong answer i have gotten 6519.87 and 319.71arrow_forwardthank you for previous answer I apologize if the acceleration was unclear it is underlined now along with values in tablesarrow_forward
- ११११११११ TABLE Much 160,000kg Croll 0,005 CD Ap Par ng При nchs 0.15 5m² 1.2kg/m³ 0.98 0.9 0,98 0,9 0,88 IF 20 10 to add The train is going to make several stops along its journey. It will be important for the train to accelerate quickdy to get back up to speed. In order to get Tesla Model S motors until we get the combined The Forque and power needed we are goins bined power and forque needed to accelerate from 0 to 324 km/hr in less than 5 Minutes. Tesla Prated 270 kW Tesla Trated Twheel ng Jaxle 440 NM 20 8.5kgm² 0.45M a) What is the minimum whole number of Tesla Motors required to achieve accelerate the train from 0 to 324 km/hr in less than 5 Nnutes? Seperate the acceleration into constant torque and constant power 0. b) How long does it take the train to accelerate from 0 to 324 km/hr with the number of Tesla motors from part a? c) Using Matlab plot the relocity profile as a function of time, Is this a constant acceleration profile? Barrow_forwardExample find f(t)? -4s F(s)= (s² + 4)²arrow_forwarddraw a kinematic diagramarrow_forward
- Rigid bodies ENG2016. Full complete solutions need okk don't use guidelines but solve full accurate steps by steps don't use chat gpt or any other ai okkk just solve complete solutions okkk take your time but solve complete solutionsarrow_forwardQuestion 6 I need to show all work step by step dynamicsarrow_forwardQu. 3 The automobile is originally at rest s = 0. If it then starts to increase its speed at i = (0.05t2)ft/s?, where t is in seconds, determine the magnitudes of its velocity and acceleration at s = 550 ft. please show all work from dynamics step by step formulaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY