Concept explainers
Two sections of steel drill pipe, joined by bolted flange plates at B, arc subjected to a concentrated torque 4000 kip-in. at x = 3 ft, and a uniformly distributed torque t0= 50 kip-ft/ft is applied on pipe BC. Let G = 11,800 ksi and assume that pipes AB and BC have the same inner diameter, d = 12 in. Pipe AB has a thickness tAB= 3/4 in., and pipe BC has a thickness tBC= 5/8 in. Find the reactive torques at A and C and the maximum shear stresses in each segment.
The reaction torque at A and the reaction torque at B .
The twist angle at the center of the bar.
Answer to Problem 3.8.9P
The reaction torque at A is
The twist angle at the center of the bar is
Explanation of Solution
Given information:
The concentrated torque is
Write the expression for polar moment of inertia of left bar.
Here, polar moment of inertia of the left bar is
Write the expression for polar moment of inertia of right bar.
Here, polar moment of inertia of the right bar is
Write the equilibrium Equation for torques.
Here, torque at A is
Write equilibrium equation for AD .
Here, torque at D is
Write equilibrium equation for DB .
Write the equilibrium Equation for BC .
Here, torque in segment BC is
Write the expression for angle of twist for AD .
Here, angle of twist is
Write the expression for angle of twist for B .
Here, angle of twist is
Substitute
Write the expression for angle of twist for BC .
Write the compatibility equation for angle of twist.
Here, angle of twist for C is
Write the expression for maximum shear stress in AB .
Here, maximum shear stress is
Write the expression for maximum shear stress in BC .
Here, maximum shear stress is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
The reactive torque at A is
Negative sign is due to selected coordinate.
Substitute
The obtained torque is negative so reverse the direction of torque.
The reactive torque at C is
Substitute
The maximum shear stress in segment AB is
Substitute
The maximum shear stress in the segment BC is
Conclusion:
The reactive torque at A is
The reactive torque at C is
The maximum shear stress in segment AB is
The maximum shear stress in the segment BC is
Want to see more full solutions like this?
Chapter 3 Solutions
Mechanics of Materials (MindTap Course List)
- A stepped shaft ABC consisting of two solid, circular segments is subjected to torques T}and T2acting in opposite directions, as shown in the figure. The larger segment of the shaft has a diameter of dv- 2.25 in. and a length Lt= 30 in.; the smaller segment has a diameter d2— 1.75 in. and a length L, = 20 in. The torques are T, = 21,000 lb-in. and fz=10.000 lb-in. (a) Find reaction torque TAat support A. (b) Find the internal torque T(x) at two locations: x = L1/2 and x = L1+ L2/2. Show these internal torques on properly drawn free-body diagrams (FBDs).arrow_forwardA circular aluminum tube subjected to pure torsion by torques T(sec figure) has an outer radius r2equal to 1.5 times the inner radius r1. (a) If the maximum shear strain in the tube is measured as 400 × 10-6 rad, what is the shear strain y1at the inner surface? (b) If the maximum a1lo-abk rate of twist is 0.125 °/m and the maximum shear strain is to be kept at 400 × 10-6 rad by adjusting the torque T, that is the minimum required outer radius ( r2)Min?arrow_forwardA solid brass bar of diameter d = 1.25 in. is subjected to torques T1as shown in part a of the figure. The allowable shear stress in the brass is 12 ksi. What is the maximum permissible value of the torques T1? If a hole of diameter 0.625 in. is drilled longitudinally through the bar, as shown in part b of the figure, what is the maximum permissible value of the torques T2? What is the percent decrease in torque and the percent decrease in weight due to the hole?arrow_forward
- A long, thin-walled tapered tube AB with a circular cross section (see figure) is subjected to a torque T. The tube has length L and constant wall thickness t. The diameter to the median lines of the cross sections at the ends A and B are dAand dB, respectively. Derive the following formula for the angle of twist of the tube: Hint: If the angle of taper is small, you may obtain approximate results by applying the formulas for a thin-walled prismatic tube to a differential element of the tapered tube and then integrating along the axis of the tube.arrow_forwardA hollow tube ABCDE constructed of monel metal is subjected to five torques acting in the directions shown in the figure. The magnitudes of the torques are T1= 1000 lb-in., T2= T4= 500 lb-in., and T3= T5= 800 lb-in. The tube has an outside diameter of d2= 1.0 in. The allowable shear stress is 12,000 psi and the allowable rate of twist is 2.0°/ft. Determine the maximum permissible inside diameter d1, of the tube.arrow_forwardWhen drilling a hole in a table leg, a furniture maker uses a hand-operated drill (see figure) with a bit of diameter d = 4.0 mm. If the resisting torque supplied by the table leg is equal to 0.3 N · m, what is the maximum shear stress in the drill bit? If the allowable shear stress in the drill bit is 32 MPa, what is the maximum resisting torque before the drill binds up? If the shear modulus of elasticity of the steel is G = 75 GPa, what is the rate of twist of the drill bit (degrees per meter)?arrow_forward
- A tapered bar AB with a solid circular cross section is twisted by torques T = 36,000 lb-in. (sec figure). The diameter of the bar varies linearly from dAat the left-hand end to dBat the right-hand end. The bar has length L = 4,0 ft and is made of an aluminum alloy having shear modulus of elasticity G = 3.9 × 106 psi. The allowable shear stress in the bar is 15,000 psi and the allowable angle of twist is 3.0°. If the diameter at end B is 1.5 times the diameter at end A, what is the minimum required diameter dAat end A?arrow_forwardA tubular shaft being designed for use on a construction site must transmit 120 kW at 1,75 Hz, The inside diameter of the shaft is to be one-half of the outside diameter. If the allowable shear stress in the shaft is 45 MPa, what is the minimum required outside diameter d?arrow_forwardThe stepped shaft shown in the figure is required to transmit 600 kW of power at 400 rpm. The shaft has a full quarter-circular fillet, and the smaller diameter D1= 100 mm. If the allowable shear stress at the stress concentration is 100 MPa, at what diameter will this stress be reached? Is this diameter an upper or a lower limit on the value of D2?arrow_forward
- A hollow steel shaft used in a construction auger has an outer diameter d2= 6.0 in. and inner diameter d1= 4.5 in. (see figure). The steel has a shear modulus of elasticity G = 11.0 × 106 psi. For an applied torque of 150 kip-in., determine the following quantities: shear stress at the outer surface of the shaft, shear stress at the inner surface, and rate of twist (degrees per unit of length). Also, draw a diagram showing how the shear stresses vary in magnitude along a radial line in the cross section.arrow_forwardA hollow circular tube having an inside diameter of 10.0 in, and a wall thickness of 1.0 in. (see figure) is subjected to a torque T = 1200 kip-in. Determine the maximum shear stress in the tube using (a) the approximate theory of thin-walled tubes, and (b) the exact torsion theory. Does the approximate theory give conservate or nonconservative results?arrow_forwardA tubular bar with outside diameterd2= 4.0 in, is twisted by torques T = 70,0 kip-in. (see figure). Under the action of these torques, the maximum tensile stress in the bar is found to be 6400 psi. Determine the inside diameter rtf of the bar. If the bar has length L = 48.0 in. and is made of aluminum with shear modulus G = 4,0 × 106 psi, what is the angle of twist d (in degrees) between the ends of the bar? (c) Determine the maximum shear strain y (in radians)?arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning