Equation of motion of the rod in terms of
Answer to Problem 3.34P
Explanation of Solution
Given:
Wheel radius, R = 0.05m
Mass of rod, m = 20kg
Length of rod, L = 1.4m
Mass of the wheel is negligible and hence the inertia is also negligible.
The wheel does not slip.
Concept used:
The motion of this object is defined by its translational motion in the plane and its rotational motion about an axis perpendicular to the plane. Two force equations describe the translational motion, and a moment equation is needed to describe the rotational motion.
For an objects’ planar motion which rotates only about an axis perpendicular to the plane, the equation of motion can be written down using Newton’s Second Law.
Equation of Motion:
Where
Using Newton’s laws for plane motion,
Where,
Derivation of Equation of motion:
Free body diagram of the rod:
N is the reaction force on the rod.
G is the mass center of the rod.
The displacement from the mass center in the x -direction is measured with respect to the reference axis,
The displacement from the mass center in the y -direction is measured with respect to the horizontal axis through point, P,
The distance between the reference axis and the point P is known.
Equations describing the translational motion:
In the x -direction,
The acceleration for the translational motion is
From the free body diagram, an expression is found for
Differentiate equation
Substitute equation
Substitute the given values, m = 20kg and L = 1.4m in equation
In the y -direction,
The acceleration for the translational motion is
From the free body diagram, an expression is found for
From point, P, there is no vertical displacement.
Differentiate equation
Using the sum of moments find an expression for the reaction force, R.
Mass inertia about the center, G, in the y -direction found using the mass inertia of a hollow cylinder in the y -direction.
Substitute this in the sum of moments equation to find an expression for R.
Substitute equations
Substitute the given values, m = 20kg and L = 1.4m in equation
Conclusion:
Equations of motion of the rod in terms of
Want to see more full solutions like this?
Chapter 3 Solutions
System Dynamics
- A 4 ft 300 Ib 1000 Ib.ft 350 Ib C 2 ft 3. 45° 250 Ib B. 3ft B 25ft 200 Ib 150 Ib Replace the force system acting on the frame shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forwardCan you research the standard percentage of Steam Quality in:(1.) Boiler - leaving boilerBoiler -> Out(2.) Condenser - coming in condenser In -> CondenserProvide reference Also define: steam quality, its purpose and importancearrow_forwardNumbers 1 and 2 and 5 are are optional problems. However, I only need the values (with units) of 3, 4 and 6. Thank you :)arrow_forward
- Three cables are pulling on a ring located at the origin, as shown in the diagram below. FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°. FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°. Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N. Specify the direction of FC using its coordinate direction angles.arrow_forwardturbomachieneryarrow_forwardauto controlsarrow_forward
- auto controlsarrow_forward1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY