
(a)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of boiling point for the given compounds is
Explanation of Solution
The given compounds are
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area.
Therefore, the increasing order of boiling point for the given compounds is
The increasing order of boiling point for the given compounds is
(b)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of boiling point for the given compounds is
Explanation of Solution
The given compounds are
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
In
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
Therefore, the increasing order of boiling point for the given compounds is
The increasing order of boiling point for the given compounds is
(c)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of boiling point for the given compounds is
Explanation of Solution
The given compounds are
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
In
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area. Branched chain alkanes have low boiling point than straight chain alkanes because in branched chain alkanes, surface area is less.
Therefore, the increasing order of boiling point for the given compounds is
The increasing order of boiling point for the given compounds is
(d)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of intermolecular force strength for the given compounds is shown below.
Explanation of Solution
The given compounds are,
Figure 1
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
The compounds containing hydroxyl groups show hydrogen bonding.
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area. Branched chain
Therefore, the increasing order of boiling point for the given compounds is,
Figure 2
The increasing order of boiling point for the given compounds is shown in Figure 2.
(e)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction.
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of intermolecular force strength for the given compounds is shown below.
Explanation of Solution
The given compounds are,
Figure 3
Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:
The boiling point increases with an increase in the surface area. Branched chain alkanes have low boiling point than straight chain alkanes because in branched chain alkanes, surface area is less.
Therefore, the increasing order of boiling point for the given compounds is,
Figure 4
The increasing order of boiling point for the given compounds is rightfully stated.
(f)
Interpretation: The given compounds in each group are to be ranked in the order of increasing boiling point.
Concept introduction: Boiling point depends upon the intermolecular forces. Greater is the intermolecular forces, greater will be the boiling point.
Intermolecular forces are also known as non-covalent interactions. The interactions present between molecules are known as intermolecular forces. A functional group present in a molecule decides the type of interaction. The increasing order of intermolecular force strength is as follows:
Therefore, the increasing order of boiling point is as follows:

Answer to Problem 3.32P
The increasing order of intermolecular force strength for the given compounds is shown below.
Explanation of Solution
The given compounds are,
Figure 5
A hydrogen bond is a strong electrostatic attraction which takes place when hydrogen atom is bonded to an electronegative atom (
Dipole-dipole interactions are the forces present between two polar molecules.
Van der Waals forces are the weak forces that are present between non-polar compounds or molecules.
The increasing order of intermolecular force strength is as follows:
The interaction present in cyclopentane is Van der Waals forces because it is a non-polar compound.
The interactions present in cyclobutanolare Van der Waals forces, hydrogen bonding, and dipole-dipole interactions.
Due to electronegativity difference between carbon and oxygen, ethers are polar molecule. Thus, the interaction present in polar molecules is Dipole-dipole interaction. The interactions present in tetrahydrofuran are Van der Waals forces and dipole-dipole interactions.
Therefore, the increasing order of boiling point for the given compounds is,
Figure 6
The increasing order of boiling point for the given compounds is rightfully stated.
Want to see more full solutions like this?
Chapter 3 Solutions
Organic Chemistry
- Q5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forwardCalculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forward
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning




