(a)
The design strength using Load and Resistance Factor Design(LRFD).
Answer to Problem 3.2.1P
Explanation of Solution
Given:
A36 steel PL
The effective area,
Concept Used:
Write the expression for the factored strength in yielding.
Write the expression for the factored strength in rupture.
Herethe strength of the material is
The design strength of LRFD is the minimum of Equation (I) and (II).
Write the expression for the nominal strength in yielding.
Here, the yield strength in yielding is
Write the expression for the gross area of the member.
Here, the length of the member is
Write the expression for the nominal strength in rupture.
Here, the yield strength in rupture is
Given that,
Here, the area of the holes is
Write the expression for the area of the holes.
Here, the diameter of the holes is
Write the expression for the diameter of the holes.
Here, the diameter of the bolts is
For the A36 steel resistance factors and the yield strength values are,
Calculation:
Calculate the gross area.
Substitute
Calculate the diameter of holes.
Substitute
Calculate the area of holes.
Substitute
Calculate the effective area.
Substitute
Calculate the yielding strength.
Substitute
Calculate the strength at rupture.
Substitute
Calculate the design strength in yielding.
Substitute
Calculate the design strength in rupture.
Substitute
Conclusion:
Compare the design strengthin yielding and rupture. The design strength using LRFD is the smaller of the two.
Thus, the design strength using LRFD is
(b)
The allowable strength usingAllowable Strength Design (ASD).
Answer to Problem 3.2.1P
The allowable strength using ASD is
Explanation of Solution
Write the expression for the allowable strength inyielding.
Here, the safety factor in yielding is
Write the expression for the allowable strength for rupture.
Here, the safety factor in rupture is
The allowable strength is the minimum of Equation (IX) and (X).
Calculation:
Calculate the allowable strength in yielding.
Substitute
Calculate the allowable strength in rupture.
Substitute
Conclusion:
Compare the allowable strength in yielding and rupture. The smaller values are the allowable strength using ASD.
Thus, the allowable strength using ASD is
Want to see more full solutions like this?
Chapter 3 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- Question 4 An engineer is assigned to design a 25-stories office building which has a building height of 75 m. Reinforced concrete shear wall system as shown in Figure Q1(a) is adopted to resist the lateral loads. The shear wall is of thickness t = 350 mm and length L = 8.5 m. Use the following data: Young's modulus of concrete E = 28 kN/mm² and the lateral load intensity w = 1.20 kN/m². Assuming the frontal width of the building façade is 15 m is facing the wind force which in turn transmitting the wind force to the shear wall system, estimate the total value of sway A at the roof level. Question 6 If the similar building in Question 4 is designed using rigid frame method is to be designed to ensure the sway is within the allowable limit. If the building width is B, and with the same building height H=75m. Using a rough estimation method, calculate the maximum allowable deflection A at the roof level. (A) 9.46 mm (B) 189.26 mm (C) 14.20 mm 町 141.95 mm 1ST STOREY FLOOR LEV. Shear wall…arrow_forwardWhat are the biggest challenges estimators' face during the quantity takeoff and pricing phases?arrow_forwardQuestion IV (30%): A 22 m thick normally consolidated clay layer has a load of 150 kPa applied to it over a large areal extent. The clay layer is located below a 3.5 m thick granular fill (p= 1.8 Mg/m³). A dense sandy gravel is found below the clay. The groundwater table is located at the top of the clay layer, and the submerged density of the clay soil is 0.95 Mg/m³. Consolidation tests performed on 2.20 cm thick doubly drained samples indicate the time for 50% consolidation completed as t50 = 10.5 min for a load increment close to that of the loaded clay layer. Compute the effective stress in the clay layer at a depth of 16 m below the ground surface 3.5 years after the application of the load.arrow_forward
- 13-3. Use the moment-distribution method to determine the moment at each joint of the symmetric bridge frame. Supports at F and E are fixed and B and C are fixed connected. Use Table 13-2. The modulus of elasticity is constant and the members are each 0.25 m thick. The haunches are parabolic. *13-4. Solve Prob. 13-3 using the slope-deflection equations. 13 0.5 m 1 m 64 kN/m D BC 1.5 m 2.25 m 2 m 6.25 m -0.5 m E -7.5 m -10 m- -7.5 m. Probs. 13-3/4arrow_forward2. Find the equivalent concentrated load(s) for the bags of cement stacked on the dock as shown here. Each bag weighs 100 lbs and is 12 inches long. Draw the loading conditions for each showing the equivalent concentrated load(s). 1 bag = 100lbs L= 12 ft L= 6 ft L= 8ftarrow_forwardI have a question for this problem in the first one wouldn't it be finding the total weight of the bags which =4800lbs and the multiply that by 12ft to find the concentrated load?? but if this is the case the load would end up as lbs/ft so I'm not too sure that is right.arrow_forward
- Q.2 The girder AB as shown in Fig. 2 has a span of 18m and supports concentrated loads located as shown. Determine the plastic moment capacity MP and the plastic collapse load Pc for the given load conditions. Use either Equilibrium drVirtual Work method in your solution. [30 marks] 5P 5P C d B 6 m 6 m 6 m 18 m Fig. 2 - Prismatic Continuousarrow_forward337 kN -Weld -25° 6 mm PROBLEM 1.33 A steel pipe of 300 mm outer diameter is fabricated from 6 mm thick plate by welding along a helix which forms an angle of 25° with a plane perpendicular to the axis of the pipe. Knowing that the maximum allowable normal and shearing stresses in directions respectively normal and tangential to the weld are σ = 50 MPa and 7 = 30 MPa, determine the magnitude P of the largest axial force that can be applied to the pipe.arrow_forward2.2 Identify the Zero Force Members for the truss shown. Show your final answer with a sketch and mark the zero force bars with "0". D 700 N 500 Narrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning