Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.6.4P
Select an American Standard Channel shape for the following tensile loads: dead load = 54 kips, live load = 80 kips, and wind load = 75 kips. The connection will be with longitudinal welds. Use an estimated shear lag factor of U = 0.85. (In a practical design, once the member was selected and the connection designed, the value of U would be computed and the member design could be revised if necessary.) The length is 17.5 ft. Use
a. Use LRFD.
b. Use ASD.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Situation 5. The angular section shown below is welded to a 12 mm gusset plate.
Both materials are A36 steel with Fy = 250 MPa. The allowable tensile
stress is 0.6Fy. The weld is E80 Electrode and 12 mm
thickness.
INNOVATIONS
Properties of L 150x90x12:
y = 50
shear stress of weld = 0.3Fu
A = 2750
Allowable
REVIEW INNOVATIE
a
K ➜
www
A. 234 KN
B. 349 KN
b
13. What is the value of P without exceeding the allowable tensile
the angle?
C. 382 kN
p. 413 kN
14. Find required length of the weld based on shear?
A. 280 mm
C. 300 mm
D. 380 mm
B. 320 mm
15. Find the required value of a?
A. 108 mm
B. 97.9 mm
D. 185 mm
NEW INNOVATIONS
REVIEW INNOVATIOf
REVIEW
NEW INNOVATIONS
4.) A 150 x 90 x 12 angular section is welded to a gusset plate as shown in the figure. The angle is A36 steel with FY=248 MPa. The weld is E 80 electrode with Fu = 550 MPa. The allowable tensile stress for the angle is 0.6Fy and the allowable shear stress for the weld is 0.3Fu. The Area of the angular section is 2751 sq.mm. with y=51mm. CS 56 Which of the following most nearly gives the design force P? a.) 400,365.9 N b.) 409,348.8 N c.) 412,793.5 N d.) 420,366.6 N 5.) A W350 x 90 steel is used as a simply supported beam 8m long. The beam carries three equal concentrated loads at every quarter points. It also carries a uniform dead load o 5 kn/m (including its own weight) and a uniform live load of 7.20 kn/m. Properties of W 350 x 90 steel: bf = 250 mm The allowable bending stress is 0.66Fy. The allowable shear stress is 0.40Fy. The allowable deflection is L/360. Use Fx=248 Mpa and E=200 Gpa. tf = 16.40 mm V d = 350 mm Determine the maximum value of each concentrated load based on…
Considering the following steel connection. The plates in Pink are 9mm steel plates. The middle plate (Yellow) is
18mm thick. The width of the plate is 100mm. The maximum allowable tension stresses on any of the plates is
100Mpa in Gross Area Yielding and 150 Mpa for Net Area or Tension Rupture. The bolts used are 8mm in
diameter, the holes are 10mm in diameter, no need to add 1.6mm. The bolts allow a maximum of 280 Mpa of
shear. Determine the maximum allowable "P" of the connection in kN.
Chapter 3 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 3 - Prob. 3.2.1PCh. 3 - Prob. 3.2.2PCh. 3 - Prob. 3.2.3PCh. 3 - Prob. 3.2.4PCh. 3 - Prob. 3.2.5PCh. 3 - Prob. 3.2.6PCh. 3 - Prob. 3.3.1PCh. 3 - Prob. 3.3.2PCh. 3 - Prob. 3.3.3PCh. 3 - Prob. 3.3.4P
Ch. 3 - Prob. 3.3.5PCh. 3 - Prob. 3.3.6PCh. 3 - Prob. 3.3.7PCh. 3 - Prob. 3.3.8PCh. 3 - Prob. 3.4.1PCh. 3 - Prob. 3.4.2PCh. 3 - Prob. 3.4.3PCh. 3 - Prob. 3.4.4PCh. 3 - Prob. 3.4.5PCh. 3 - Prob. 3.4.6PCh. 3 - Prob. 3.5.1PCh. 3 - Prob. 3.5.2PCh. 3 - Prob. 3.5.3PCh. 3 - Prob. 3.5.4PCh. 3 - Prob. 3.6.1PCh. 3 - Prob. 3.6.2PCh. 3 - Prob. 3.6.3PCh. 3 - Select an American Standard Channel shape for the...Ch. 3 - Prob. 3.6.5PCh. 3 - Use load and resistance factor design and select a...Ch. 3 - Select a threaded rod to resist a service dead...Ch. 3 - Prob. 3.7.2PCh. 3 - Prob. 3.7.3PCh. 3 - Prob. 3.7.4PCh. 3 - Prob. 3.7.5PCh. 3 - Prob. 3.7.6PCh. 3 - Prob. 3.8.1PCh. 3 - Prob. 3.8.2PCh. 3 - Prob. 3.8.3PCh. 3 - Prob. 3.8.4PCh. 3 - Prob. 3.8.5P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Compute the size of fillet weld for a bracket connection with ISMB 300 column as shown in figure. Permissible shear stress in weld = 110 MPa. %3D 425 mm 100 kN 300 Single 12 mm plate 250 mmarrow_forwardDetermine the design tensile strength of plate (200x8 mm) connected to 10-mm thick gusset using 20 mm bolts as shown in the figure, if the yield and the ultimate stress of the steel used are 250 MPa and 410 MPa, respectively. Add 1mm around the bolt for the hole. Use LRFD method. Plate 8-mm thick 2 3 40+ 30 301 T 200 mm Gusset 10-mm thick 3af 30 2_3 *40 40+ 50,54 +40arrow_forwardA 100 x 100 x 10 mm angle is to be welded to a gusset plate. The angle carries a load of 200 kN applied along its centroidal axis which is 28.7 mm above the short leg as shown in the figure. Use an 8 mm fillet weld with a minimum tensile strength Fu = 483.33 MPa. Determine the length of a transverse fillet weld along the edge of the angle in order to avoid eccentricity of loading. Determine the length of side fillet weld required at the heel. Determine the length of side fillet weld required at the toe.arrow_forward
- Tension Member Design Problem 1. A channel shape is under 50 kips dead and 100 kips live tensile axial load as shown in the figure. The member is connected to a gusset plate with 10 inch longitudinal welds. Find the lightest channel shape to carry the loading. Use only vielding and rupture limit states to design. Use 50 ksi steel (Fy=50 ksi, Fu=65 ksi). (a) Assume yielding limit state controls in the design process; (b) After selecting the lightest section, check the rupture limit state. Do not redesing if needed. 1 Pa=50 kips PL=100 kips 10"arrow_forwardCalculate the maximum shear force in the welds in the given figure. P=160kN X = 150mm y= 125mm z=70mm 4 Y Narrow_forwardSTAGGERED CONNECTIONS: A PLATE WITH WIDTH OF 400 mm AND THICKNESS OF 12 mm IS TO BE CONNECTED TO A PLATE OF THE SAME WIDTH AND THICKNESS BY 34 mm DIAMETER BOLTS, AS SHOWN IN THE FIGURE. THE HOLES ARE 2 mm LARGER THAN THE BOLT DIAMETER. THE PLATE IS A36 STEEL WITH YIELD STRENGTH Fy = 248 MPa. ASSUME ALLOWABLE TENSILE STRESS ON NET AREA IS 0.60Fy. IT IS REQUIRED TO DETERMINE THE VALUE OF b SUCH THAT THE NET WIDTH ALONG BOLTS 1-2-3-4 IS EQUAL TO THE NET WIDTH ALONG BOLTS 1-2-4. a. CALCULATE THE VALUE OF b IN MILLIMETERS. b. CALCULATE THE VALUE OF THE NET AREA FOR TENSION IN PLATES IN SQUARE MILLIMETERS. c. CALCULATE THE VALUE OF P SO THAT THE ALLOWABLE TENSILE STRESS ON NET AREA WILL NOT BE EXCEEDED.arrow_forward
- Please answer the problem attached image.(using Nscp 2015) thank youarrow_forwardA tension plate shown below is used to support suspended load "T". Gusset Plate Fy Fu = 400 MPa = 248 MPa 200 mm a) Determine the allowable tensile capacity of the plate if L = 240 mm. (Assume weld strength is satisfactory).arrow_forwardThe five-bolt connection must support an applied load of P = 149 kips. If the average shear stress in the bolts must be limited to 50 ksi, what is the minimum bolt diameter that may be used for this connection? P Answer: d = i in.arrow_forward
- A channel C250x37 mm section is welded to a 9 mm gusset plate. Welding is not permitted on the back of the channel. All steel is A36 with Fy=250 MPa and Fu=400 MPa. Use E70electrodes having and Fu=485 MPa (SMAW) process. The maximum length of lap is 250mm. The size of fillet weld is 8mm. Assume the width of slot weld is 22 mm. Size of slot weld is 13mm Properties of C250x37 A = 4750 mm2 tw = 13.0 mm2 d = 254 mm a. Determine the force resisted by the slot weld in kN, when the full tensile capacity is 712.5 KN (from the gross yielding capacity using ASD) Hint: Full tensile Capacity = Force Resisted by Fillet and Slot Weld Round your answer to 3 decimal places.arrow_forwardb. The gusset plate shown in Figure 10 is welded to a vertical member. The gusset plate carries a load of 250 kN acting at a distance of 250 mm from the closest edge of the weld. The weld around the gusset plate is completed in two 140 mm horizontal portions and one 320 mm vertical portion. If the maximum allowable shear stress of the weld is 200 N/mm², detemine the minimum thickness of the weld required. In calculations, the second and higher order terms of the weld thickness for second moment of area calculations may be neglected. 250 kN 140 mm 250mm 140 mm Figure 10 320 mmarrow_forwardTopic:Welded Connection - Civil Engineering -Steel Design *Use latest NSCP/NSCP 2015 formula to solve this problem *Please use hand written to solve this problem A tension member consists of a double angle section with long legs back to back. The angles are attached to a 9.5 mm thick gusset plate. Fu = 400 MPa Fy = 248 MPa for angular section. Fw = 480 MPa for 8 mm fillet weld. Reduction factor U = 0.80 Prop. of One Angle L 125m x 75m x 12.7 m A= 2419 mm2 y=44.45 mm Questions: a) Compute the design strength capacity of one angle. b) Compute the base metal shear strength (gusset plate) per unit length. c) Compute the length L1 and L2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY