Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.7.2P
To determine
(a)
The size of threaded rod using Load and Resistance Factor Design (LRFD) method when the load is not moving.
To determine
(b)
The size of threaded rod using LRFD when the load is kept at random locations.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A W14X120 is used as a tension member in atruss. The flanges of the member are connected to a gusset plate by ¾ inch boltas shown below. Use A36 steel with Fy=36 ksi and Fu=58 ksi
Determine the Yielding Capacity of the section based on LRFD (kips)
Determine the Tensile Rupture capacity of the section based on LRFD
Determine the Demand to Governing Capacity Ratio (based on yielding and rupture only) if the Demand load carried by the section are DL=200 kips LL=400 kips use LRFD
For the clevis connection shown, determine the shear stress in the 23-mm-diameter bolt for an applied load of P = 165 kN.
O 141 MPa
O 211 MPa
O 167 MPa
O 120 MPa
O 199 MPa
Clevis
J 6
The cast iron bearing seat in the picture is bolted to the steel beam of the ceiling bracket and supports the gravity load.
Use M20 coarse thread ISO class 8.8 bolts with a thickness of 3.4 mm
The steel washers are placed under the bolt head and nut. The flange of this bracket is 20 mm thick, the shaft
The elastic modulus of the bearing is 135 GPa.
(a) Assuming this is a permanent joint and the fasteners are lubricated when assembled, find the required wrench torque.
(b) If the gravity load is 15 kN, try to find the load factor n of the design.
Chapter 3 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 3 - Prob. 3.2.1PCh. 3 - Prob. 3.2.2PCh. 3 - Prob. 3.2.3PCh. 3 - Prob. 3.2.4PCh. 3 - Prob. 3.2.5PCh. 3 - Prob. 3.2.6PCh. 3 - Prob. 3.3.1PCh. 3 - Prob. 3.3.2PCh. 3 - Prob. 3.3.3PCh. 3 - Prob. 3.3.4P
Ch. 3 - Prob. 3.3.5PCh. 3 - Prob. 3.3.6PCh. 3 - Prob. 3.3.7PCh. 3 - Prob. 3.3.8PCh. 3 - Prob. 3.4.1PCh. 3 - Prob. 3.4.2PCh. 3 - Prob. 3.4.3PCh. 3 - Prob. 3.4.4PCh. 3 - Prob. 3.4.5PCh. 3 - Prob. 3.4.6PCh. 3 - Prob. 3.5.1PCh. 3 - Prob. 3.5.2PCh. 3 - Prob. 3.5.3PCh. 3 - Prob. 3.5.4PCh. 3 - Prob. 3.6.1PCh. 3 - Prob. 3.6.2PCh. 3 - Prob. 3.6.3PCh. 3 - Select an American Standard Channel shape for the...Ch. 3 - Prob. 3.6.5PCh. 3 - Use load and resistance factor design and select a...Ch. 3 - Select a threaded rod to resist a service dead...Ch. 3 - Prob. 3.7.2PCh. 3 - Prob. 3.7.3PCh. 3 - Prob. 3.7.4PCh. 3 - Prob. 3.7.5PCh. 3 - Prob. 3.7.6PCh. 3 - Prob. 3.8.1PCh. 3 - Prob. 3.8.2PCh. 3 - Prob. 3.8.3PCh. 3 - Prob. 3.8.4PCh. 3 - Prob. 3.8.5P
Knowledge Booster
Similar questions
- A W14X120 is used as a tension member in atruss. The flanges of the member are connected to a gusset plate by 3/4 inch boltas shown below. Use A36 steel with Fy-36 ksi and Fu=58 ksi Determine the Yielding Capacity of the section based on LRFD (kips) Determine the Tensile Rupture capacity of the section based on LRFD Determine the Demand to Governing Capacity Ratio (based on yielding and rupture only) if the Demand load carried by the section are DL=200 kips LL=400 kips use LRFD Properties and Dimension Ag=35.30 in^2 x = 6.24 in ry= 3.74 in d=14.5 in tf=0.94 in bf=14.7 in tw=0.59 in k=1.54 d=14.5 Y k1=1.5 bf=14.7 tf-0.94 X -tw=0.59 Harrow_forwardThe given beam is laterally supported at the ends and at the 1 3 points (points 1, 2, 3, and 4). The concentrated load is a service live load. Use Fy=50 ksi and select a W-shape. Do not check deflections. a. Use LRFD. b. Use ASD.arrow_forwardThe member shown in Figure P6.6-4 is part of a braced frame. The load and moments are computed from service loads, and bending is about the x axis (the end shears are not shown). The frame analysis was performed consistent with the effective length method, so the flexural rigidity. EI, was unreduced. Use Kx=0.9. The load and moments are 30 dead load and 70 live load. Determine whether this member satisfies the appropriate AISC interaction equation. a. Use LRFD. b. Use ASD.arrow_forward
- A structural tee bracket is attached to a column flange with six bolts as shown in Figure . All structural steel is A992. Check this connection for compliance with the AISC Specification. Assume that the bearing strength is controlled by the bearing deformation strength of 2.4dtFu. a. Use LRFD. b. Use ASD.arrow_forwardA 16 mm thick tension member is connected by two 6.25 mm spliced plates as shown. The tension member carries a service loads of dead load of 110 kN and a live load of 100 kN. 40, 80 , 40 , 40, 80 40 1625 mm 16 mm 1625 mm Fy 248 MPa Fu = 400 MPa Diam. of bolts = 16 mm Fnv = 300 MPa O Determine the nominal strength for one bolt due to shear. O Determine the nominal strength for one bolt due to bearing strength of the connection. ® Determine the number of bolts required for the connection.arrow_forward3. Determine the maximum tensile capacity of a L 178 x 102 x 19 angle as shown below if bolt diameter = 24 mm. The long leg of the member is connected to a 24mm thick guest plate. Use A572M gr.345 steel material. Ta 76 → 76 V L178x102x19 mam 76 76 5 38 4. The tension member shown below is a C 310 x 30.8 of A572M gr 345 steel materials. Will it safely support a service dead load of 265 kN and a service live load of 555 kN.arrow_forward
- A beam is connected to a column with 3⁄4inchdiameter, Group A slipcritical bolts, as shown in Figure . A992 steel is used for the beam and column, and A36 steel is used for the angles. The force R is the beam reaction. Based on the strength of the 10 angletocolumn bolts, determine: a. The maximum available factored load reaction, Ru, for LRFD. b. The maximum available service load reaction, Ra, for ASD.arrow_forwardThe steel tie bar shown is to be designed to carry a tension force of magnitude P = 120KN when bolted between double brackets at A and B. The bar will be fabricated from 20-mm-thick plate stock. For the grade of steel to be used, the maximum allowable stresses are: o = 180 MPa, t = 120 MPa, op = 380 MPa. Design the tie bar by determining the required values of: a. the diameter d of the bolt, b. the dimension b at each end of the bar, c. the dimension h of the bar.arrow_forwardAsap plsarrow_forward
- A tensile member consists of 2 ? 4 × 3 × 1/2 carries a service dead load of 50 k and live load of 100 k, as shown in Figure P13.15. The angles are welded to a 3/4-in. gusset plate, which is welded to a column flange. Design the connection of the angles to the gusset plate and the gusset plate to the column. The gusset plate is connected to the column by a CJP groove, and the angles are connected by a fillet weld. Use E 70 electrodes. The steel is A572. FIGURE P13.15 Welded connection for Problem 13.26. L4 x 3% 3-in. gusset plate Design welded connection 40⁰arrow_forwardA plate is used as a tension member, to carry a deadload = 300 KN and live load of 260 KN. Steel used is A36, F,= 248 MPa, Fu = 400 MPa. If the width of the tension plate is 210 mm, determine: a) The thickness of the plate based on NSCP 2015 ASD, bult used is M20.-- b) The thickness of plate based on NSCP 2015 LRFD. Bolt used is M20.-- 210 mm -Tension Plate M20 boltsarrow_forwardSOLVE FOR1 HRarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning