Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Chapter 3, Problem 3.2.3P
To determine
(a)
The service load using Load and Resistance Factor Design (LRFD).
To determine
(b)
The service load using Allowable Strength Design (ASD).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A C8 x 11.5 is connected to a gusset plate with 7/8 inch diameter bolts as shown in Figure P3.2-3. The steel is A572 Grade 50. If the member is subjected to a dead load and live load only, what is the total service load capacity if the live to dead load ratio is 3? Assume that Ae=0.85An. Use LRFD and ASD.
A C8 × 11.5 is connected to a gusset plate with 7⁄8-inch-diameter bolts as shown in the Figure . The steel is A572 Grade 50. If the member is subjected to dead load and live load only, what is the total service load capacity if the live-to-dead load ratio is 3? Assume that Ae = 0.85An.a. Use LRFD.b. Use ASD.
A C8 × 11.5 is connected to a gusset plale with 22 mm diameter bolts as shown. The steel is A572 Grade 50. If the
member is subjected to dead load and live load only, what is the total scrvice load capacity if the live-to-dead load
ratio is 3? Assume that Ae = 0.85Ap.
a. Use LRFD.
b. Use ASD.
Properties of A572 Grade 50:
Fy = 345 MPa
C8 × 11.5
Fu = 448 MPa
Properties of C8 x 11.5:
Ag = 2,181 mm?
br = 57.4 mm
d= 203.2 mm
Lw = 5.6 mm
lf = 9.9 mm
Chapter 3 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 3 - Prob. 3.2.1PCh. 3 - Prob. 3.2.2PCh. 3 - Prob. 3.2.3PCh. 3 - Prob. 3.2.4PCh. 3 - Prob. 3.2.5PCh. 3 - Prob. 3.2.6PCh. 3 - Prob. 3.3.1PCh. 3 - Prob. 3.3.2PCh. 3 - Prob. 3.3.3PCh. 3 - Prob. 3.3.4P
Ch. 3 - Prob. 3.3.5PCh. 3 - Prob. 3.3.6PCh. 3 - Prob. 3.3.7PCh. 3 - Prob. 3.3.8PCh. 3 - Prob. 3.4.1PCh. 3 - Prob. 3.4.2PCh. 3 - Prob. 3.4.3PCh. 3 - Prob. 3.4.4PCh. 3 - Prob. 3.4.5PCh. 3 - Prob. 3.4.6PCh. 3 - Prob. 3.5.1PCh. 3 - Prob. 3.5.2PCh. 3 - Prob. 3.5.3PCh. 3 - Prob. 3.5.4PCh. 3 - Prob. 3.6.1PCh. 3 - Prob. 3.6.2PCh. 3 - Prob. 3.6.3PCh. 3 - Select an American Standard Channel shape for the...Ch. 3 - Prob. 3.6.5PCh. 3 - Use load and resistance factor design and select a...Ch. 3 - Select a threaded rod to resist a service dead...Ch. 3 - Prob. 3.7.2PCh. 3 - Prob. 3.7.3PCh. 3 - Prob. 3.7.4PCh. 3 - Prob. 3.7.5PCh. 3 - Prob. 3.7.6PCh. 3 - Prob. 3.8.1PCh. 3 - Prob. 3.8.2PCh. 3 - Prob. 3.8.3PCh. 3 - Prob. 3.8.4PCh. 3 - Prob. 3.8.5P
Knowledge Booster
Similar questions
- Two plates each with thickness t = 16 mm are bolted together with 6 – 22 mm diameter bolts forming a lap connection. Bolt spacing are as follows: S1 = 40 mm, S2 = 80 mm, S3 = 100 mm. Bolt hole diameter = 25 mm. Using A36 steel having Fy = 248 MPa and Fu = 400 MPa. P P S - P S2 S2 DETERMINE: 1. Determine the allowable load Pa based on bearing at bolt holes. (ASD) 2. Determine the ultimate load Pu based on block shear.arrow_forwardA C8 x 11.5 is connected to a gusset plate with 7/8-inch-diameter bolts as shown in Figure P3.2-3. The steel is A572 Grade 50. If the member is subjected to dead load and live load only, what is the total service load capacity if the live-to-dead load ratio is 3? Assume that A = 0.85A,,. C8 × 11.5arrow_forwardNeed urgent and correct solutionarrow_forward
- Please do right answer and calculation.arrow_forwardAn L 5 x 5 x tension member of A588 steel is connected to a gusset plate with six -inch- diameter bolts as shown in Figure P3.3-4. If the member is subject to dead load only, what is the maximum total service load that can be applied if the ratio of live load to dead load is 2.0? Use the alternative value of U from AISC Table D3.1 (Consider yielding & rupture limit states only.) a. Use LRFD b. Use ASD L5 x 5 x '½ 1'/2" 5 spaces @ 3" - 15" 12" FIGURE P3.3-4 na.coarrow_forward7. Use Allowable Strength Design – ASD 8. Use Load and Resistance Factor Design – LRFD Answer everything. Thank you!arrow_forward
- Considering the following steel connection. The plates in Pink are 9mm steel plates. The middle plate (Yellow) is 18mm thick. The width of the plate is 100mm. The maximum allowable tension stresses on any of the plates is 100Mpa in Gross Area Yielding and 150 Mpa for Net Area or Tension Rupture. The bolts used are 8mm in diameter, the holes are 10mm in diameter, no need to add 1.6mm. The bolts allow a maximum of 280 Mpa of shear. Determine the maximum allowable "P" of the connection in kN.arrow_forwardCan u solve me step by step please . thank uarrow_forwardPrepare an excel file and to find a) area of the bolt, b) Average Shear Stress Bolt c) Bearing Area Stress and d) allowable stress. Applied force range – 500 to 1000 N (in step of 100 N) Bolt diameter range – 10 to 25 mm (in step of 5 mm) Plate thickness – 10 mm Consider ultimate tensile strength as 460 N/mm2. And consider factor of safety as 1.5.arrow_forward
- 1.A tension member is 25 mm thick plate as shown. The bolts are 20 mm. diameter high-strength bolts. The steel is A36. Compute the following: 130 mm 25 mm 0 0 a) The design strength for LFRD. b) The allowable strength for ASD. 25 mm CIVIL ENGINEERING STEEL DESIGNarrow_forwardI just need help with part barrow_forwardA PL 38 x 6 tension member is welded to a gusset plate as shown in figure. The steel is A36. PL ½ x 6 The design strength based on yielding is nearest to: The design strength based on rupture is nearest to: The design strength for LRFD is nearest to: The allowable strength based on yielding is nearest to: The allowable strenath based on rupture is nearest to: The allowable strength for ASD.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning