Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.3.4P
To determine
(a)
The maximum total service load that can be applied on the tension member using the Load and Resistance Factor Design (LRFD) method.
To determine
(b)
The maximum total service load that can be applied on the tension member using Allowable Strength Design (ASD) method.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Need urgent and correct solution
A C8 × 11.5 is connected to a gusset plate with 7⁄8-inch-diameter bolts as shown in the Figure . The steel is A572 Grade 50. If the member is subjected to dead load and live load only, what is the total service load capacity if the live-to-dead load ratio is 3? Assume that Ae = 0.85An.a. Use LRFD.b. Use ASD.
An angle L5×5×% tension member of A36 steel is connected to a gusset plate with six
3/4-inch diameter bolts as shown in Figure 3. If the member is subject to dead load and live load
only, what is the maximum total service load that can be applied if the ratio of live load to dead
load is 3.0? Use the alternative value of U from AISC Table D3.1.
L5X5X%
1/2"
Jefe
H
5 spaces @ 3"
= 15"
1/2"
Chapter 3 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 3 - Prob. 3.2.1PCh. 3 - Prob. 3.2.2PCh. 3 - Prob. 3.2.3PCh. 3 - Prob. 3.2.4PCh. 3 - Prob. 3.2.5PCh. 3 - Prob. 3.2.6PCh. 3 - Prob. 3.3.1PCh. 3 - Prob. 3.3.2PCh. 3 - Prob. 3.3.3PCh. 3 - Prob. 3.3.4P
Ch. 3 - Prob. 3.3.5PCh. 3 - Prob. 3.3.6PCh. 3 - Prob. 3.3.7PCh. 3 - Prob. 3.3.8PCh. 3 - Prob. 3.4.1PCh. 3 - Prob. 3.4.2PCh. 3 - Prob. 3.4.3PCh. 3 - Prob. 3.4.4PCh. 3 - Prob. 3.4.5PCh. 3 - Prob. 3.4.6PCh. 3 - Prob. 3.5.1PCh. 3 - Prob. 3.5.2PCh. 3 - Prob. 3.5.3PCh. 3 - Prob. 3.5.4PCh. 3 - Prob. 3.6.1PCh. 3 - Prob. 3.6.2PCh. 3 - Prob. 3.6.3PCh. 3 - Select an American Standard Channel shape for the...Ch. 3 - Prob. 3.6.5PCh. 3 - Use load and resistance factor design and select a...Ch. 3 - Select a threaded rod to resist a service dead...Ch. 3 - Prob. 3.7.2PCh. 3 - Prob. 3.7.3PCh. 3 - Prob. 3.7.4PCh. 3 - Prob. 3.7.5PCh. 3 - Prob. 3.7.6PCh. 3 - Prob. 3.8.1PCh. 3 - Prob. 3.8.2PCh. 3 - Prob. 3.8.3PCh. 3 - Prob. 3.8.4PCh. 3 - Prob. 3.8.5P
Knowledge Booster
Similar questions
- 2. For the figure shown, calculate the net area of the 10 x 200 mm plate. The plate is connected at its end with two lines of 20 mm bolts. Using LRFD, determine the load P that the plates can carry against tensile yielding in the gross section and the tensile rupture in the net section. Use A-36 steel. PL 5x200mm PL 5x200mm Pu PL 10x200mm Puarrow_forwardA C8 x 11.5 is connected to a gusset plate with 7/8 inch diameter bolts as shown in Figure P3.2-3. The steel is A572 Grade 50. If the member is subjected to a dead load and live load only, what is the total service load capacity if the live to dead load ratio is 3? Assume that Ae=0.85An. Use LRFD and ASD.arrow_forwardplease use SI for unitarrow_forward
- Two plates each with thickness t = 16 mm are bolted together with 6 – 22 mm diameter bolts forming a lap connection. Bolt spacing are as follows: S1 = 40 mm, S2 = 80 mm, S3 = 100 mm. Bolt hole diameter = 25 mm. Using A36 steel having Fy = 248 MPa and Fu = 400 MPa. P P S - P S2 S2 DETERMINE: 1. Determine the allowable load Pa based on bearing at bolt holes. (ASD) 2. Determine the ultimate load Pu based on block shear.arrow_forwardDetermine the design tensile strength of plate (200x8 mm) connected to 10-mm thick gusset using 20 mm bolts as shown in the figure, if the yield and the ultimate stress of the steel used are 250 MPa and 410 MPa, respectively. Add 1mm around the bolt for the hole. Use LRFD method. Plate 8-mm thick 2 3 40+ 30 301 T 200 mm Gusset 10-mm thick 3af 30 2_3 *40 40+ 50,54 +40arrow_forwardSTAGGERED CONNECTIONS: A PLATE WITH WIDTH OF 400 mm AND THICKNESS OF 12 mm IS TO BE CONNECTED TO A PLATE OF THE SAME WIDTH AND THICKNESS BY 34 mm DIAMETER BOLTS, AS SHOWN IN THE FIGURE. THE HOLES ARE 2 mm LARGER THAN THE BOLT DIAMETER. THE PLATE IS A36 STEEL WITH YIELD STRENGTH Fy = 248 MPa. ASSUME ALLOWABLE TENSILE STRESS ON NET AREA IS 0.60Fy. IT IS REQUIRED TO DETERMINE THE VALUE OF b SUCH THAT THE NET WIDTH ALONG BOLTS 1-2-3-4 IS EQUAL TO THE NET WIDTH ALONG BOLTS 1-2-4. a. CALCULATE THE VALUE OF b IN MILLIMETERS. b. CALCULATE THE VALUE OF THE NET AREA FOR TENSION IN PLATES IN SQUARE MILLIMETERS. c. CALCULATE THE VALUE OF P SO THAT THE ALLOWABLE TENSILE STRESS ON NET AREA WILL NOT BE EXCEEDED.arrow_forward
- A plate with width of 420 mm and thickness of 13 mm is to be connected to a plate of the same width and thickness by 30 mm diameter bolts, as shown in the Figure 1. The holes are 3mm larger than the bolt diameter. The plate is A36 steel with yield strength Fy = 248MPa. Assume allowable tensile stress on net area is 0.60Fy. It is required to determine the value of b such that the net width along bolts 1-2-3-4 is equl to the net width along bolts 1-2-4. W = 420 mm t = 13 mm a = 64 mm c = 104 mm d = 195 mm Bolt Diameter = 30 mm Holes Diameter = 30 mm + 3 = 33 mm ?? = 248 MPa Allowable Tensile Stress on ?? = 0.60Fy a. Calculate the vaue of b in millimeters. b. Calculate the value of the net area for tension in plates in square millimeters. c. Calculate the value of P so that the allowable tensile stress on net area will not be exceeded.arrow_forwardAn L 5 x 5 x tension member of A588 steel is connected to a gusset plate with six -inch- diameter bolts as shown in Figure P3.3-4. If the member is subject to dead load only, what is the maximum total service load that can be applied if the ratio of live load to dead load is 2.0? Use the alternative value of U from AISC Table D3.1 (Consider yielding & rupture limit states only.) a. Use LRFD b. Use ASD L5 x 5 x '½ 1'/2" 5 spaces @ 3" - 15" 12" FIGURE P3.3-4 na.coarrow_forwardPlease do right answer and calculation.arrow_forward
- A C8 x 11.5 is connected to a gusset plate with 7/8-inch-diameter bolts as shown in Figure P3.2-3. The steel is A572 Grade 50. If the member is subjected to dead load and live load only, what is the total service load capacity if the live-to-dead load ratio is 3? Assume that A = 0.85A,,. C8 × 11.5arrow_forwardThe given angle bar L125x75x12 with Ag = 2,269 sq.mm. is connected to a gusset plate using 20 mm diameter bolts as shown in the figure. Using A36 steel with Fy = 248 MPa and Fu = 400 MPa, determine the following: 2. Determine the nominal tensile strength of the 12 mm thick, A36 angle bar shown based on: a. Gross yielding b. Tensile rupture Bolts used for the connection are 20 mm in diameter. O O O O O O O Effective net area of the tension member if the shear lag factor is 0.80. Select the correct response: 1,516.1 1,354.4 1,431.2 1,221.6arrow_forwardTopic:Bolted Steel Connection - Civil Engineering *Use latest NSCP/NSCP 2015 formula to solve this problem *Please use hand written to solve this problem The bracket shown in the figure is supported by four 22 mm diameter bolts in single shear. The bracket is subject to an eccentric load of 150 kN. Use LRFD. Use A36 steel. Questions a) Determine the critical force on the most stressed bolt. b) Determine the nominal shear stress of the most stressed bolt.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning