Genetic Analysis: An Integrated Approach (2nd Edition)
2nd Edition
ISBN: 9780321948908
Author: Mark F. Sanders, John L. Bowman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 21P
Use the blank pedigrees provided to depict transmission of (a) an X-linked recessive trait and (b) an X-linked dominant trait, by filling in circles and squares to represent individuals with the trait of interest. Give genotypes for each person in each pedigree. Carefully design each transmission pattern so that pedigree (a) cannot be confused with autosomal recessive transmission and pedigree (b) cannot be confused with autosomal dominant transmission. Identify the transmission events that eliminate the possibility of autosomal transmission for each pedigree.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Cystic fibrosis (CF) is an autosomal recessive trait. A three-generation pedigree is shown below for a family that carries the mutant allele for cystic fibrosis. Note that carriers are not colored in to allow you to figure out their genotypes. Normal allele = F CF mutant allele = f
What is the genotype of individual #13?
A) ff
B) FF
C) Ff
D) it is impossible to tell
A young woman is worried about having a child because her mother's only sister had a son with Duchenne muscular dystrophy (DMD). The young woman has no brothers or sisters. (DMD is a rare X-linked recessive disorder.)
(a)Draw the relevant parts of the pedigree of the family described above. Be sure to include the grandmother, the other three women mentioned, and all their spouses. Fill in genotypes according to the information in hand. (b)Calculate the probability that the young woman's first child will have DMD.
The following pedigree shows the inheritance of a human disorder. Affected individuals are
shown with filled symbols.
II
III
2 3
5
Based on the pedigree, propose the least likely inheritance pattern of the disease among
autosomal dominance, autosomal recessive, X-linked dominance and X-linked recessive.
Your choice of answer can be impossible and possible. Explain your answer by giving the
evidence that supports or opposes each mode of inheritance. You can reconstruct the table
shown below and draw the pedigree in your answer script. Write the possible genotype of
each individual in the pedigree for each inheritance pattern proposed.
Mode of
Possibility
Explanations
Pedigree
inheritance
Autosomal
dominance
Autosomal
recessive
X-linked
dominance
X-linked
recessive
Chapter 3 Solutions
Genetic Analysis: An Integrated Approach (2nd Edition)
Ch. 3 - Examine the following diagrams of cells from an...Ch. 3 - Our closest primate relative, the chimpanzee, has...Ch. 3 -
3. In a test of his chromosome theory of...Ch. 3 - Cohesion between sister chromatids, as well as...Ch. 3 - 5. The diploid number of the hypothetical animal...Ch. 3 - 6. An organism has alleles R1 and R2 on one pair...Ch. 3 - Explain how the behavior of homologous chromosomes...Ch. 3 - 8. Suppose crossover occurs between the homologous...Ch. 3 -
9. Alleles A and a are on one pair of autosomes,...Ch. 3 - Prob. 10P
Ch. 3 - Describe the role of the following structures or...Ch. 3 - A womans father has ornithine transcarbamylase...Ch. 3 - In humans, hemophilia A (OMIM 306700) is an...Ch. 3 -
14. A wild-type male and a wild-type female...Ch. 3 - 15. A woman with severe discoloration of her tooth...Ch. 3 - 16. In a large metropolitan hospital, cells from...Ch. 3 - In cats, tortoiseshell coat color appears in...Ch. 3 - 18. The gene causing Coffin–Lowry syndrome (OMIM...Ch. 3 - 19. Four eye-color mutants in Drosophila—apricot,...Ch. 3 - 20. For each pedigree shown,
a. Identify which...Ch. 3 - 21. Use the blank pedigrees provided to depict...Ch. 3 - 22. Figure 3.22 (page 89) illustrates reciprocal...Ch. 3 - 23. In fruit flies, yellow body (y) is recessive...Ch. 3 - 24. In a species of fish, a black spot on the...Ch. 3 - LeschNyhan syndrome (OMIM 300322) is a rare...Ch. 3 - 26. In humans, SRY is located near a...Ch. 3 - 27. In an 1889 book titled Natural Inheritance...Ch. 3 - 30. Drosophila has a diploid chromosome number of...Ch. 3 - 29. A wild-type Drosophila male and female are...Ch. 3 - 28. In Drosophila, the X-linked echinus eye...Ch. 3 - 31. While examining a young tortoiseshell cat, you...Ch. 3 - 32. Redgreen color blindness in humans is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Please consider the following pedigree. Assume that people who marry in to the family do not carry the allele unless otherwise indicated. Assume complete penetrance. image attached a. Is it possible for the inheritance pattern for the trait illustrated in this pedigree to be as a result of each of the following? Answer yes or no. (i) an autosomal recessive allele (AR)(ii) an autosomal dominant allele (AD)(iii) a X-linked recessive allele (XR)(iv) a X-linked dominant allele (XD) b. Provide a set of parents that definitively supports your answers in (a).arrow_forwarda) Which of the four modes of inheritance are consistent with the disease shown in this human pedigrees below? (List the compatible mode or modes) Give an answer for a, b and c b) If the parents in pedigree c have 2 other children, what is the probability that they will carry the disease?arrow_forwardA homozygous recessive allele, aa, is responsible for albinism. Humans can exhibit this phenotype. In each of the following cases, determine the possible genotypes of the mother and father, and of their children: (a) Both parents have normal phenotypes; some of their children are albino and others are unaffected: (b) Both parents are albino and have only albino children: (c) The woman is unaffected, the man is albino, and they have one albino child and three unaffected children: at a busy hospital. The son of the first couple has hemophilia, a recessive, X-linked Two mothers give birth to sor disease. Neither parent from couple #1 has the disease. The second couple has an unaffected son, despite the fact that the father has hemophilia. The two couples challenge the hospital in court, claiming their babies must have beer swapped at birth. You must advise as to whether or not the sons could have been swapped. What would you say? 5. In a dispute over parentage, the mother of a child with…arrow_forward
- Consider the two very limited unrelated pedigrees shown here. Of the four combinations of X-linked recessive, Xlinked dominant, autosomal recessive, and autosomal dominant, which modes of inheritance can be ruled out in each case? (a) (b) II 1arrow_forwarda)75% b)0% c)30%arrow_forwardNow assume that the pedigree shown in question 1 shows the inheritance of a rare genetic disease. a) The disease is most likely autosomal dominant b) The disease is most likely autosomal recessive c) The disease is equally likely to be either autosomal dominant or autosomal recessive, but cannot be x-linked d) Cannot be determined from the information givenarrow_forward
- X‑linked, recessive diseases, such as hemophilia, are extremely rare in the population. However, many women are carriers and show no sign of the disease. The pedigree illustrates the inheritance of an X‑linked, recessive disease. Determine whether the unknown individuals are affected by the disease, unaffected by the disease, or carriers of the X‑linked recessive allele. Unaffected individuals are not carriers of the X‑linked recessive allele.arrow_forwardAlbinism, lack of pigmentation in humans, results from an autosomal recessive gene (a). Two parents with normal pigmentation have an albino child. (a) What is the probability that their next child will be albino? (b) What is the probability that their next child will be an albino girl? (c) What is the probability that their next three children will be albino?arrow_forwardOne form of the bleeding disorder known as von Willebrand disease is an autosomal recessive disease. A man who is a carrier marries a woman who is also a carrier of the disease. (a) What percentage of their children are likely to have a disease phenotype? (b) What percentage of their children are likely to have a normal phenotype? (c) What percentage of their children are likely to be carriers of the disease?arrow_forward
- The pedigree shows a family in which several members have suffered from one and the same disease (look at the picture to be able to answer) a) Is it a dominant or recessive allele that causes the disease? Motivate your answer. b) Is allele autosomal or sex-linked? Motivate your answer. c) What is the probability that III-3 and III-4 will have a healthy child? Motivate your answer.arrow_forwardWhat is the pattern of inheritance? Please Provide a specific reason that justifies your selection of this pattern of inheritance as the correct one, and also explain why each of the other two alternatives are not correct. As part of your answer, you must include the phenotypic ratio, including the sex of the offspring, that you would expect to find in each of the three possible scenarios. Please specify whether this pattren of inheritance is (i) rare X-linked recessive, (ii) sex-influenced, or (iii) sex-limited.arrow_forwardPlease consider the following pedigree. Assume that people who marry in to the family do not carry the allele. Assume complete penetrance. I II III 3 IV 1 2 a. Is it possible for the inheritance pattern for the trait illustrated in this pedigree to be as a result of each of the following? Answer yes or no. (i) an autosomal recessive allele (AR) (ii) an autosomal dominant allele (AD) (iii) a X-linked recessive allele (XR) (iv) a X-linked dominant allele (XD) b. Based strictly on the characteristic patterns of inheritance that define the four different options in (a), give a definitive motivation for the most likely mode of inhertance.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Animal Communication | Ecology & Environment | Biology | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=LsMbn3b1Bis;License: Standard Youtube License