Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.6, Problem 2.30P
To determine
The constants
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Demonstrate that e#ikz are solutions to both H and p, (momentum) for a free particle. Do you expect a
difference for a bound particle where V (z) + 0?
Problem 3.36. Consider an Einstein solid for which both N and q are much
greater than 1. Think of each oscillator as a separate "particle."
(a) Show that the chemical potential is
N+
- kT ln
N
(b) Discuss this result in the limits N > q and N « q, concentrating on the
question of how much S increases when another particle carrying no energy
is added to the system. Does the formula make intuitive sense?
Question related to Quantum Mechanics : Problem 2.45
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- Problem 4.25 If electron, radius [4.138] 4πεmc2 What would be the velocity of a point on the "equator" in m /s if it were a classical solid sphere with a given angular momentum of (1/2) h? (The classical electron radius, re, is obtained by assuming that the mass of the electron can be attributed to the energy stored in its electric field with the help of Einstein's formula E = mc2). Does this model make sense? (In fact, the experimentally determined radius of the electron is much smaller than re, making this problem worse).arrow_forwardc) Corsider the orthonormol basıs {117, 1273, the stote 1 Y>= 174 e*® 12> and the operators and ansuer the follo wing questions : B = 11>2). I. Cololote I. Get the eigen vo lues and cigenvectors of C and B and use this to thot for argue depends on e while does not.arrow_forwardProve thatarrow_forward
- Problem #1 (Problem 5.3 in book). Come up with a function for A (the Helmholtz free energy) and derive the differential form that reveals A as a potential: dA < -SdT – pdV [Eqn 5.20]arrow_forwardA triangle in the xy plane is defined with corners at (x, y) = (0,0), (0, 2) and (4, 2). We want to integrate some function f(x, y) over the interior of this triangle. Choosing dx as the inner integral, the required expression to integrate is given by: Select one: o Sro S-o f(x, y) dx dy x=0 2y y=0 O S-o So F(x, y) dæ dy O o S f(x, y) dy dæ O So So F(x, y) dx dy x/2 =0arrow_forwardA7arrow_forward
- I have been able to do this with derivatives but I can't figure out how to do this with definite integralsarrow_forwardProblem 2.21 Suppose a free particle, which is initially localized in the range -a < x < a, is released at time t = 0: А, if -a < х <а, otherwise, (x, 0) = where A and a are positive real constants. 50 Chap. 2 The Time-Independent Schrödinger Equation (a) Determine A, by normalizing V. (b) Determine (k) (Equation 2.86). (c) Comment on the behavior of (k) for very small and very large values of a. How does this relate to the uncertainty principle? *Problem 2.22 A free particle has the initial wave function (x, 0) = Ae ax where A and a are constants (a is real and positive). (a) Normalize (x, 0). (b) Find V(x, t). Hint: Integrals of the form e-(ax?+bx) dx can be handled by "completing the square." Let y = Ja[x+(b/2a)], and note that (ax? + bx) = y? – (b²/4a). Answer: 1/4 e-ax?/[1+(2ihat/m)] 2a Y (x, t) = VI+ (2iħat/m) (c) Find |4(x, t)2. Express your answer in terms of the quantity w Va/[1+ (2hat/m)²]. Sketch |V|? (as a function of x) at t = 0, and again for some very large t.…arrow_forwardTwo particles, each of mass m, are connected by a light inflexible string of length l. The string passes through a small smooth hole in the centre of a smooth horizontal table, so that one particle is below the table and the other can move on the surface of the table. Take the origin of the (plane) polar coordinates to be the hole, and describe the height of the lower particle by the coordinate z, measured downwards from the table surface. i. sketch all forces acting on each mass ii. explain how we get the following equation for the total energyarrow_forward
- 1. Consider the 2D motion of a particle of mass u in a central force field with potential V(r). a) Find the r, o polar-coordinate expression of the Lagrangian for this system and write down the corresponding Euler-Lagrange e.o.m.s. b) Note that the angular variable o is cyclic. What is the physical interpretation of the correspond- ing integral of motion? (For the definitions of the italicized terms see this link.) c) Solve for o in terms of this integral of motion and substitute the result into the Euler-Lagrange equation for r. Show that the result can be arranged to look like a purely 1D e.o.m. of the form dVef(r) (1) dr Identify in the process the explicit expression for Vef(r), which will depend among other things on the integral of motion. d) Take now k V (r) = with k > 0 to be an attractive electrostatic/gravitational-type potential. Sketch the profile of the corresponding effective potential function Vef(r). Find the equilibrium solution for the correspond- ing e.o.m. (1). What…arrow_forwardDivergence theorem. (a) Use the divergence theorem to prove, v = -478 (7) (2.1) (b) [Problem 1.64, Griffiths] In case you're not persuaded with (a), try replacing r by (r² + e²)2 and watch what happens when ɛ → 0. Specifically, let 1 -V². 4л 1 D(r, ɛ) (2.2) p2 + g2 By taking note of the defining conditions of 8°(7) [(1) at r = 0, its value goes to infinity, (2) for all r + 0, its value is 0, and (3) the integral over all space is 1], demonstrate that 2.2 goes to 8*(F) as ɛ → 0.arrow_forwardWhat does your result for the potential energy U(x=+L) become in the limit a→0?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON