
(a)
The elements of M matrix in terms of elements of S matrix,
(a)

Answer to Problem 2.54P
The elements of M matrix in terms of elements of S matrix is
Explanation of Solution
The element B can be expressed as follows,
The element F can be expressed as follows,
Use the value of G from the equation (I) in (II).
From the equation (I) and (III), the matric M can be written as follows.
Similarly define the element G and solve for
Similarly define the element F and solve for
Use the value of B from the equation (V) in (VI).
From equation (V), and (VII).
From the equation (V),
From the equation (VII),
From the equation (V),
From the equation (VII),
Conclusion:
Therefore, the elements of M matrix in terms of elements of S matrix is
(b)
Show that M matrix for the combination is the product of the two M matrix for each section separately.
(b)

Answer to Problem 2.54P
Showed that M matrix for the combination is the product of the two M matrix for each section separately.
Explanation of Solution
Consider the Figure below.
Consider the matrix.
Consider the matrix.
Use equation (XIV) in (XIII).
Hence proved.
Conclusion:
Therefore, the M matrix for the combination is the product of the two M matrix for each section separately.
(c)
The matrix for the scattering from a single delta function potential at point a.
(c)

Answer to Problem 2.54P
The matrix for the scattering from a single delta function potential at point a is
Explanation of Solution
The wave function for the scattering from a single delta function potential at point a is
Using the continuity condition of the wave function, equation (XV) can be written as.
Using the discontinuity condition of the derivative of wave function, equation (XV) can be written as.
Multiply the equation (XVI) with
Multiply the equation (XVII) with
Add equation (XVIII) and (XIX), and solve for
Where,
Subtract equation (XIX) from (XVIII), and solve for
From equation (XX), and (XXI), the matrix can be written as follows.
Conclusion:
Therefore, the matrix for the scattering from a single delta function potential at point a is
(d)
The matrix for scattering from the double delta function, and the transmission coefficient for this potential.
(d)

Answer to Problem 2.54P
The matrix for scattering from the double delta function is
Explanation of Solution
The matrix
From the result of part (b), the matrix for scattering from the double delta function can be expressed as.
The transmission coefficient can be calculated using the equation (XXIV).
Simplify the equation (XXV).
Conclusion:
Therefore, The matrix for scattering from the double delta function is
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction To Quantum Mechanics
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





