Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.40P
(a)
To determine
The values of A and
(b)
To determine
The particle’s energy in each state, probabilities and expectation value of energy.
(c)
To determine
The smallest value of T.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain this
Problem 3.
A pendulum is formed by suspending a mass m from the
ceiling, using a spring of unstretched length lo and spring constant k.
3.1. Using r and 0 as generalized coordinates, show that
1
L =
= 5m (i² + r²0?) + mgr cos 0 –
z* (r – lo)²
3.2. Write down the explicit equations of motion for your generalized coordinates.
Starting with the equation of motion of a three-dimensional isotropic harmonic
ocillator
dp.
= -kr,
dt
(i = 1,2,3),
deduce the conservation equation
dA
= 0,
dt
where
1
P.P, +kr,r,.
2m
(Note that we will use the notations r,, r2, r, and a, y, z interchangeably, and similarly
for the components of p.)
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- Consider the function v(1,2) =( [1s(1) 3s(2) + 3s(1) 1s(2)] [x(1) B(2) + B(1) a(2)] Which of the following statements is incorrect concerning p(1,2) ? a. W(1,2) is normalized. Ob. The function W(1,2) is symmetric with respect to the exchange of the space and the spin coordinates of the two electrons. OC. y(1,2) is an eigenfunction of the reference (or zero-order) Hamiltonian (in which the electron-electron repulsion term is ignored) of Li with eigenvalue = -5 hartree. d. The function y(1,2) is an acceptable wave function to describe the properties of one of the excited states of Lit. Oe. The function 4(1,2) is an eigenfunction of the operator S,(1,2) = S;(1) + S,(2) with eigenvalue zero.arrow_forwardWrite down the equations and the associated boundary conditions for solving particle in a 1-D box of dimension L with a finite potential well, i.e., the potential energy U is zero inside the box, but finite outside the box. Specifically, U = U₁ for x L. Assuming that particle's energy E is less than U, what form do the solutions take? Without solving the problem (feel free to give it a try though), qualitatively compare with the case with infinitely hard walls by sketching the differences in wave functions and probability densities and describing the changes in particle momenta and energy levels (e.g., increasing or decreasing and why), for a given quantum number.arrow_forward(3.8) This question introduces a rather efficient method for calculating the mean and variance of probability distributions. We define the moment generating function M(t) for a random variable x by M(t) = (etx). Show that this definition implies that (x) = M(n) (0), (3.51) (3.52) where M(n) (t) mean (x) = d" M/dt" and further that the M (¹) (0) and the variance σ = = M(2)(0) [M(¹) (0)] 2. Hence show that: - (a) for a single Bernoulli trial, = M(t) pe 1-p; (3.53) (b) for the binomial distribution, M(t) = (pe +1 - p)"; (3.54) (c) for the Poisson distribution, M(t) = em(et-1); (3.55) (d) for the exponential distribution, λ M(t) (3.56) Hence derive the mean and variance in each case and show that they agree with the results derived earlier.arrow_forward
- Consider the half oscillator" in which a particle of mass m is restricted to the region x > 0 by the potential energy U(x) = 00 for a O where k is the spring constant. What are the energies of the ground state and fırst excited state? Explain your reasoning. Give the energies in terms of the oscillator frequency wo = Vk/m. Formulas.pdf (Click here-->)arrow_forwardProblem 3: Chemical potential of an Einstein solid. Consider an Einstein solid for which both N and q are much greater than 1. Think of each ocillator as a separate “particle". a) Show that the chemical potential is H = -kT In (**e) b) Discuss this result in the limits N » q and N « q, concentrating on the question of how much S increases when another particle carrying no energy is added to the system. Does the formula make intuitive sense?arrow_forwardLet F = (z^2 cos y, −xz^2 sin y, 2xz cos y − cos z).a) Show that F is irrotational.b) Find a potential function f (x, yz) such that F = ∇f , and f (0, π, π/3) = 2arrow_forward
- 2.4. A particle moves in an infinite cubic potential well described by: V (x1, x2) = {00 12= if 0 ≤ x1, x2 a otherwise 1/2(+1) (a) Write down the exact energy and wave-function of the ground state. (2) (b) Write down the exact energy and wavefunction of the first excited states and specify their degeneracies. Now add the following perturbation to the infinite cubic well: H' = 18(x₁-x2) (c) Calculate the ground state energy to the first order correction. (5) (d) Calculate the energy of the first order correction to the first excited degenerated state. (3) (e) Calculate the energy of the first order correction to the second non-degenerate excited state. (3) (f) Use degenerate perturbation theory to determine the first-order correction to the two initially degenerate eigenvalues (energies). (3)arrow_forwardQ # 01: Consider a ball of 100g dropped with zero velocity from the height of 2m. Estimate its total energy in eV units. Using the energy conservation, find out the velocity as a function of position of the ball. Sketch its phase trajectory. Calculate the time it takes to reach the ground. Let’s assume that it is bounced back with no loss in its total energy.Will it reachthe same height? Make an analytical argument. What if the collision with the ground is not elastic and it loses some of its energy (which energy?).The ball will eventually come to rest after bouncing few times. Sketch the phase trajectory for the whole duration. What is the range of total energy of this system? Can the energy of this systemassume discrete values? Explain mathematically.arrow_forwardLet's consider a harmonic oscillator. The total energy of this oscillator is given by E=(p²/2m) +(½)kx?. A) For constant energy E, graph the energies in the range E to E + dE, the allowed region in the classical phase space (p-x plane) of the oscillator. B) For k = 6.0 N / m, m = 3.0 kg and the maximum amplitude of the oscillator xmax =2.3 m For the region with energies equal to or less than E, the oscillator number of states that can be entered D(E).arrow_forward
- A particle of mass m moves inside a potential energy landscape U(z) = X|2| along the z axis. Part (a) What are the units of the constant X? Part (b) If the particle has kinetic energy me at the origin at z = 0, where are the classical turning points of the motion?arrow_forwardI need a b and c answeredarrow_forwardFind a scalar potential, fi, if F=(3x^2yz^2)i+(x^3z^2)j+(2x^3yz)k, and fi(1,1,1)=1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON