Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.2, Problem 2.3P
To determine
Show that there is no acceptable solution to the Schrodinger equation for the infinite square well with
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrödinger equation (for the infinite square well) with E = 0 or E < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrödinger equation and showing that you cannot meet the boundary
conditions.)
Solve the time-independent Schrödinger equation with appropriate
boundary conditions for an infinite square well centered at the origin [V (x) = 0, for
-a/2 < x < +a/2; V (x) = 00 otherwise]. Check that your allowed energies are
consistent with mine (Equation 2.23), and confirm that your y's can be obtained from
mine (Equation 2.24) by the substitution x x - a/2.
Consider an infinite well, width L from x=-L/2 to x=+L/2. Now
consider a trial wave-function for this potential, V(x) = 0 inside the well
and infinite outside, that is of the form (z) = Az. Normalize this
wave-function. Find , .
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- question 6 pleasearrow_forwardConsider the potential barrier illustrated in Figure 1, with V(x) = V₁ in the region 0 L. b) Identify the parts of your solutions that correspond to the incident, reflected and transmitted particles. Explain why the remaining term in the region > L can be set to zero. c) Determine the probability currents associated with the incident, reflected and transmitted particles.arrow_forward4.9 A particle is trapped inside an infinite one-dimensional square well of width a in the first excited state (n = 2). (a) You make a measurement to locate the particle. At what po- sitions are you most likely to find the particle? At what positions are you least likely to find it? (b) Calculate (p2) for this particle.arrow_forward
- Question 2 2.1 Consider an infinite well for which the bottom is not flat, as sketched here. If the slope is small, the potential V = 6 |x|/ a may be considered as a perturbation on the square- well potential over -a/2 ≤x≤a/2. -8 W V(x) a/2 -a/2 X Calculate the ground-state energy, correct to first order in perturbation theory. Given (0) = √²/co COS Ground state of box of size a: = Ground state energy: E(0) = 4²k² 2ma². 0 Yarrow_forwardPROBLEM 2. Consider a spherical potential well of radius R and depth Uo, so that the potential is U(r) = -Uo at r R. Calculate the minimum value of Uc for which the well can trap a particle with l = 0. This means that SE at Uo > Uc has at least one bound ground state at l = 0 and E < 0. At Ug = Uc the bound state disappears.arrow_forwardProblem 1: Bosons, Fermions Consider a system of five particles, inside a container where the allowed energy levels are nondegenerate and evenly spaced. For instance, the particles could be trapped in a one-dimensional harmonic oscillator potential. In this problem you will consider the allowed states for this system, depending on whether particles are identical fermions, identical bosons, or distinguishable particles. a) Describe the ground state of this system, for each of these three cases. b) Suppose that the system has one unit of energy (above the ground state). Describe the allowed states of the system, for each of the three cases. How many possible system states are there in each case? c) Repeat part (b) for two units of energy and for three units of energy. d) Suppose that the temperate of this system is low, so that the total energy is low (though not necessarily zero). In what way will the behavior of the bosonic system differ from that of the system of distinguishable…arrow_forward
- Consider a state function that is real, i.e., such that y (x) = y* (x). Show that (p) Under what conditions on p (x), would the function o (p) turn out to be real, and if so, what is (x) worth? = 0. What happens in that case with (p2) and with (x) ?;arrow_forwardLet's consider the two-qubit state 3 |) = 100)+101) +110). a) Find the expectation values for the values of both qubits separately. b) The product of qubit values is represented by the operator b₁b2 = (ô× 1) (I Øô) = (ô ❀ô), where bn is the observable for the value of qubit n. Find the expectation value for the product. For statistically independent quantities the expectation value of their product is the product of their expectation values. Are the values of the qubits correlated in state |V)? c) Show that the state cannot be expressed as a product state, i.e., it is an entangled state.arrow_forwardConsider the one-dimensional time-independent Schrödinger equation for some arbitrary potential V(x). Prove that if a solution p(x) has the property that (x) → 0 as r → ±00, then the solution must be nondegen- erate and therefore real, apart from a possible overall phase factor. Hint: Show that the contrary assumption leads to a contradiction.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON