(a)
The normalized wave function.
(a)
Answer to Problem 2.42P
The normalized wave function is
Explanation of Solution
Given that the wave function is;
Normalize the wave function.
Use the normalization constant to rewrite the wave function.
Conclusion:
Therefore, the normalized wave function is
(b)
The wave function at time
(b)
Answer to Problem 2.42P
The wave function at time
Explanation of Solution
Write the solution to the generic quantum problem, for a free particle;
Use equation (III) in (IV).
Thus, the wave function at time
Let
The integral in equation (VII) becomes;
Thus, the wave function at time
In the above expression, the first exponential term which represent the Gaussian envelop travels at speed
Conclusion:
Therefore, the wave function at time
(c)
The probability density
(c)
Answer to Problem 2.42P
The probability density is
Explanation of Solution
The wave function is obtained from part (b) is given in equation (VIII).
The probability density can be expressed as;
Simplify the term in the square bracket.
The term
Where,
Thus, equation (IX) can be modified as;
Where
Thus, the graph of
Conclusion:
Therefore, the probability density is
(d)
The expectation values
(d)
Answer to Problem 2.42P
The expectation values and
Explanation of Solution
Write the expression for the expectation value of
Use equation (XI) in (IX) and solve the integral.
Let
Here, the first integral is trivially zero; and the second is
The expectation value of
Substitute
The expectation value
The expectation value
Where,
Write
Use
The values of
Conclusion:
Therefore, the expectation values and
(e)
Whether the uncertainty principle holds or not.
(e)
Answer to Problem 2.42P
The uncertainty principle holds for the given case.
Explanation of Solution
The values of
The product of
Use the expression for
Thus, uncertainty principle holds for this case.
Conclusion:
Therefore, the uncertainty principle holds for the given case.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction To Quantum Mechanics
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill