(a)
The normalized wave function.
(a)
Answer to Problem 2.42P
The normalized wave function is
Explanation of Solution
Given that the wave function is;
Normalize the wave function.
Use the normalization constant to rewrite the wave function.
Conclusion:
Therefore, the normalized wave function is
(b)
The wave function at time
(b)
Answer to Problem 2.42P
The wave function at time
Explanation of Solution
Write the solution to the generic quantum problem, for a free particle;
Use equation (III) in (IV).
Thus, the wave function at time
Let
The integral in equation (VII) becomes;
Thus, the wave function at time
In the above expression, the first exponential term which represent the Gaussian envelop travels at speed
Conclusion:
Therefore, the wave function at time
(c)
The probability density
(c)
Answer to Problem 2.42P
The probability density is
Explanation of Solution
The wave function is obtained from part (b) is given in equation (VIII).
The probability density can be expressed as;
Simplify the term in the square bracket.
The term
Where,
Thus, equation (IX) can be modified as;
Where
Thus, the graph of
Conclusion:
Therefore, the probability density is
(d)
The expectation values
(d)
Answer to Problem 2.42P
The expectation values and
Explanation of Solution
Write the expression for the expectation value of
Use equation (XI) in (IX) and solve the integral.
Let
Here, the first integral is trivially zero; and the second is
The expectation value of
Substitute
The expectation value
The expectation value
Where,
Write
Use
The values of
Conclusion:
Therefore, the expectation values and
(e)
Whether the uncertainty principle holds or not.
(e)
Answer to Problem 2.42P
The uncertainty principle holds for the given case.
Explanation of Solution
The values of
The product of
Use the expression for
Thus, uncertainty principle holds for this case.
Conclusion:
Therefore, the uncertainty principle holds for the given case.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction To Quantum Mechanics
- Divergence theorem. (a) Use the divergence theorem to prove, v = -478 (7) (2.1) (b) [Problem 1.64, Griffiths] In case you're not persuaded with (a), try replacing r by (r² + e²)2 and watch what happens when ɛ → 0. Specifically, let 1 -V². 4л 1 D(r, ɛ) (2.2) p2 + g2 By taking note of the defining conditions of 8°(7) [(1) at r = 0, its value goes to infinity, (2) for all r + 0, its value is 0, and (3) the integral over all space is 1], demonstrate that 2.2 goes to 8*(F) as ɛ → 0.arrow_forward1 W:0E *Problem 1.3 Consider the gaussian distribution p(x) = Ae¬^(x-a)² %3D where A, a, and A are positive real constants. (Look up any integrals you need.) (a) Use Equation 1.16 to determine A. (b) Find (x), (x²), and ơ. (c) Sketch the graph of p(x).arrow_forwardProblem #1 (Problem 5.3 in book). Come up with a function for A (the Helmholtz free energy) and derive the differential form that reveals A as a potential: dA < -SdT – pdV [Eqn 5.20]arrow_forward
- Question 2 2.1 Consider an infinite well for which the bottom is not flat, as sketched here. If the slope is small, the potential V = 6 |x|/ a may be considered as a perturbation on the square- well potential over -a/2 ≤x≤a/2. -8 W V(x) a/2 -a/2 X Calculate the ground-state energy, correct to first order in perturbation theory. Given (0) = √²/co COS Ground state of box of size a: = Ground state energy: E(0) = 4²k² 2ma². 0 Yarrow_forwardConsider the half oscillator" in which a particle of mass m is restricted to the region x > 0 by the potential energy U(x) = 00 for a O where k is the spring constant. What are the energies of the ground state and fırst excited state? Explain your reasoning. Give the energies in terms of the oscillator frequency wo = Vk/m. Formulas.pdf (Click here-->)arrow_forwardProblem 4.25 If electron, radius [4.138] 4πεmc2 What would be the velocity of a point on the "equator" in m /s if it were a classical solid sphere with a given angular momentum of (1/2) h? (The classical electron radius, re, is obtained by assuming that the mass of the electron can be attributed to the energy stored in its electric field with the help of Einstein's formula E = mc2). Does this model make sense? (In fact, the experimentally determined radius of the electron is much smaller than re, making this problem worse).arrow_forward
- Show that a gaussian psi (x) = e ^(-ax^2) can be an eigenfunction of H(hat) for harmonic oscillator 1. Compute T(hat)*psi 2. Compute Vhat* psi - assume V operator is 1/2w^2x^2 3. Write out Hbar*psi and identify terms so Hber*psi=E*psi is true 4. From cancellation find a 5. insert back a to Schrodinger eq above and find Earrow_forwardProblem 2.2 Show that E must exceed the minimum value of V (x), for every normalizable solution to the time-independent Schrödinger equation. What is the classical analog to this statement? Hint: Rewrite Equation 2.5 in the form d² 2m [V(x) - E]; dx² if E < Vmin, then and its second derivative always have the same sign-argue that such a function cannot be normalized. h² d² 2m dx² + Vy = Ev. (2.5)arrow_forwardProblem 3.7 (a) Suppose that f(x) and g(x) are two eigenfunctions of an operator Q, with the same eigenvalue q. Show that any linear combination of f and g is itself an eigenfunction of Q. with eigenvalue q. (b) Check that f(x) = exp(x) and g(x) = exp(-x) are eigenfunctions of the operator d?/dx², with the same eigenvalue. Construct two linear combina- tions of f and g that are orthogonal eigenfunctions on the interval (-1, 1).arrow_forward
- Question related to Quantum Mechanics : Problem 1.16arrow_forwardplease provide detailed solution for a to c, thank youarrow_forwardI have an electron that I want to put in a rigid box. How small do I need to make the box so that the speed of my electron in its ground state inside the box will be equal to the speed of light? Include a sketch of U(x) and ?(x). Sketch the situation, defining all your variables.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON