Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.3, Problem 2.13P
(a)
To determine
The value of A.
(b)
To determine
The wave function
(c)
To determine
The expectation value of
(d)
To determine
The values of energy of particle and corresponding probabilities.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle of massm in a harmonic oscillator potential with angular frequency w is in the state
(1 + {t)쭈
What is (p?) for this particle?
mhw
2
O 6mħw
O 3mhw
1
1
For a simple harmonic oscillator potential, Vo(x) =kx² = mo'x?,
%|
2
ħo
and the ground state
2
the ground state energy eigenvalue is E
eigenfunction is
a²x?
то
exp
where a?
%3D
2
Now suppose that the potential has a small perturbation,
1
kx² →
1
-kx? + λxό.
2
Vo(x):
→ V(x) =
Use perturbation theory to find the (first order) corrected eigenvalue, in terms of @.
[7]
1x 3 x 5 x ...× (2n – 1)
2n+1Bn
You will need:
x2" exp(-ßx²) dx =
a question of quantum mechanics:
Consider a particle in a two-dimensional potential
as shown in the picture
Suppose the particle is in the ground state. If we measure the position of the particle, what isthe probability of detecting it in region 0<=x,y<=L/2 ?
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- 3arrow_forwardA particle with zero (total) energy is described by the wavefunction, Ψ(x) =A cos((n?x/L)): −L/4≤ x ≤ L/4 = 0 : elsewhere. Determine the normalization constant A. Calculate the potential energy of the particle. What is the probability that the particle will be found between x= 0 and x=L/8?arrow_forwardA particle in an infinite well is in the ground state with energy1.54eV. How much energy must be added to the particle to reach the second excited state (n = 3)? The third excited state (n = 4)?arrow_forward
- Consider a particle of mass m, located in a potential energy well.one-dimensional (box) with infinite height walls. The wave function that describes this system is:Ψn(x) = K sin (nπx /L), for 0 ≤ x ≤ LΨn(x) = 0 for any other value.K is a constant and n = 1,2,3,... Determine K*K = │K│2arrow_forwardA particle confined in a one-dimensional box of length L(0<=x<=L) is in a state described by the wavefunction Ψ(x)= Ψ1+ Ψ2(x). Where A and B are constants given by real numbers and A>=0.(With X=6 and Y=3)l)Determine what relationship A and B must satisfy for the wavefunction to be normalized.ll)Suppose that A=B .What is the probability of the particle being found in the interval 0<=x<=L/2?lll)What values of A and B that minimize the probability of finding the particle in the range of positions 0<=x<=L/2?arrow_forwardA particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forward
- is this right?arrow_forwardConsider the Schrodinger equation for a one-dimensional linear harmonic oscillator: -(hbar2/2m) * d2ψ/dx2 + (kx2/2)*ψ(x) = Eψ(x) Substitute the wavefunction ψ(x) = e-(x^2)/(ξ^2) and find ξ and E required to satisfy the Schrodinger equation. [Hint: First calculate the second derivative of ψ(x), then substitute ψ(x) and ψ′′(x). After this substitution, there will be an overall factor of e-(x^2)/(ξ^2) on both sides of the equation which canbe an canceled out. Then, gather all terms which depend on x into one coefficient multiplying x2. This coefficient must be zero because the equation must be satisfied for any x, and equating it with zero yields the expression for ξ. Finally, the remaining x-independent part of the equation determines the eigenvalue for energy E associated with this solution.]arrow_forwardThe normalised wavefunction for an electron in an infinite 1D potential well of length 80 pm can be written:ψ=(0.587 ψ2)+(0.277 i ψ7)+(g ψ6). As the individual wavefunctions are orthonormal, use your knowledge to work out |g|, and hence find the expectation value for the energy of the particle, in eV.arrow_forward
- Consider the function v(1,2) =( [1s(1) 3s(2) + 3s(1) 1s(2)] [x(1) B(2) + B(1) a(2)] Which of the following statements is incorrect concerning p(1,2) ? a. W(1,2) is normalized. Ob. The function W(1,2) is symmetric with respect to the exchange of the space and the spin coordinates of the two electrons. OC. y(1,2) is an eigenfunction of the reference (or zero-order) Hamiltonian (in which the electron-electron repulsion term is ignored) of Li with eigenvalue = -5 hartree. d. The function y(1,2) is an acceptable wave function to describe the properties of one of the excited states of Lit. Oe. The function 4(1,2) is an eigenfunction of the operator S,(1,2) = S;(1) + S,(2) with eigenvalue zero.arrow_forwardHarmonic oscillator eigenstates have the general form 1 μω ,1/4 μω AG)(√(-) n ħ In this formula, which part determines the number of nodes in the harmonic oscillator state? = y (x) 1 √(™ ћn 2"n! Holev 1/4 μω 1 2"n! exp(-1022²) 2ħ μω ħ 2"n! exp μω χ 2ħ 2arrow_forwardProblem 1: (a) A non-relativistic, free particle of mass m is bouncing back and forth between two perfectly reflecting walls separated by a distance L. Imagine that the two oppositely directed matter waves associated with this particle interfere to create a standing wave with a node at each of the walls. Find the kinetic energies of the ground state (first harmonic, n = 1) and first excited state (second harmonic, n = 2). Find the formula for the kinetic energy of the n-th harmonic. (b) If an electron and a proton have the same non-relativistic kinetic energy, which particle has the larger de Broglie wavelength? (c) Find the de Broglie wavelength of an electron that is accelerated from rest through a small potential difference V. (d) If a free electron has a de Broglie wavelength equal to the diameter of Bohr's model of the hydrogen atom (twice the Bohr radius), how does its kinetic energy compare to the ground-state energy of an electron bound to a Bohr model hydrogen atom?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning