Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.5, Problem 2.25P
To determine
Check that the bound state of the delta function well is orthogonal to the scattering state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 3.30 Derive the transformation from the position-space wave function to the “energy-space” wave function using the technique of Example 3.9. Assume that the energy spectrum is discrete, and the potential is time-independent.
Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrödinger equation (for the infinite square well) with E = 0 or E < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrödinger equation and showing that you cannot meet the boundary
conditions.)
Problem 2.11
(a) Compute (x). (p). (x²), and (p²), for the states yo (Equation 2.60) and 1 (Equation
2.63), by explicit integration. Comment: In this and other problems involving the
harmonic oscillator it simplifies matters if you introduce the variable = √mo/hx
and the constanta (m/h)¹/4
(b) Check the uncertainty principle for these states.
(c) Compute (T) and (V) for these states. (No new integration allowed!) Is their sum
what you would expect?
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- Solve the time-independent Schrödinger equation with appropriate boundary conditions for an infinite square well centered at the origin [V (x) = 0, for -a/2 < x < +a/2; V (x) = 00 otherwise]. Check that your allowed energies are consistent with mine (Equation 2.23), and confirm that your y's can be obtained from mine (Equation 2.24) by the substitution x x - a/2.arrow_forwardDetermine the transmission coefficient for a rectangular barrier (same as Equation 2.127, only with +Vo in the region -a Vo (note that the wave function inside the barrier is different in the three cases). Partial answer: For Earrow_forwardProblem #1 (Problem 5.3 in book). Come up with a function for A (the Helmholtz free energy) and derive the differential form that reveals A as a potential: dA < -SdT – pdV [Eqn 5.20]arrow_forwardProblem 2.3 Show that there is no acceptable solution to the (time-independent) Schrödinger equation for the infinite square well with E = 0 or E < 0. (This is a special case of the general theorem in Problem 2.2, but this time do it by explicitly solving the Schrödinger equation, and showing that you cannot satisfy the boundary conditions.)arrow_forwardQuestion related to Quantum Mechanics : Problem 2.45arrow_forwardProblem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct to three significant digits) of finding the particle outside the classically allowed region? Hint: Classically, the energy of an oscillator is E = (1/2) ka² = (1/2) mo²a², where a is the amplitude. So the “classically allowed region" for an oscillator of energy E extends from –/2E/mw² to +/2E/mo². Look in a math table under “Normal Distribution" or "Error Function" for the numerical value of the integral, or evaluate it by computer.arrow_forwardProblem 1.17 A particle is represented (at time=0) by the wave function A(a²-x²). if-a ≤ x ≤+a. 0, otherwise. 4(x, 0) = { (a) Determine the normalization constant A. (b) What is the expectation value of x (at time t = 0)? (c) What is the expectation value of p (at time t = 0)? (Note that you cannot get it from p = md(x)/dt. Why not?) (d) Find the expectation value of x². (e) Find the expectation value of p².arrow_forwardWrite down the equations and the associated boundary conditions for solving particle in a 1-D box of dimension L with a finite potential well, i.e., the potential energy U is zero inside the box, but finite outside the box. Specifically, U = U₁ for x L. Assuming that particle's energy E is less than U, what form do the solutions take? Without solving the problem (feel free to give it a try though), qualitatively compare with the case with infinitely hard walls by sketching the differences in wave functions and probability densities and describing the changes in particle momenta and energy levels (e.g., increasing or decreasing and why), for a given quantum number.arrow_forwardA particle of mass in moving in one dimension is confined to the region 0 < 1 < L by an infinite square well potential. In addition, the particle experiences a delta function potential of strengtlh A located at the center of the well (Fig. 1.11). The Schrödinger equation which describes this system is, within the well, + A8 (x – L/2) v (x) == Ep(x), 0 < x < L. !! 2m VIx) L/2 Fig. 1.11 Find a transcendental equation for the energy eigenvalues E in terms of the mass m, the potential strength A, and the size L of the system.arrow_forwardProblem 3.7 (a) Suppose that f(x) and g(x) are two eigenfunctions of an operator Q, with the same eigenvalue q. Show that any linear combination of f and g is itself an eigenfunction of Q. with eigenvalue q. (b) Check that f(x) = exp(x) and g(x) = exp(-x) are eigenfunctions of the operator d?/dx², with the same eigenvalue. Construct two linear combina- tions of f and g that are orthogonal eigenfunctions on the interval (-1, 1).arrow_forwardProblem 2.21 Suppose a free particle, which is initially localized in the range -a < x < a, is released at time t = 0: А, if -a < х <а, otherwise, (x, 0) = where A and a are positive real constants. 50 Chap. 2 The Time-Independent Schrödinger Equation (a) Determine A, by normalizing V. (b) Determine (k) (Equation 2.86). (c) Comment on the behavior of (k) for very small and very large values of a. How does this relate to the uncertainty principle? *Problem 2.22 A free particle has the initial wave function (x, 0) = Ae ax where A and a are constants (a is real and positive). (a) Normalize (x, 0). (b) Find V(x, t). Hint: Integrals of the form e-(ax?+bx) dx can be handled by "completing the square." Let y = Ja[x+(b/2a)], and note that (ax? + bx) = y? – (b²/4a). Answer: 1/4 e-ax?/[1+(2ihat/m)] 2a Y (x, t) = VI+ (2iħat/m) (c) Find |4(x, t)2. Express your answer in terms of the quantity w Va/[1+ (2hat/m)²]. Sketch |V|? (as a function of x) at t = 0, and again for some very large t.…arrow_forwardShow that a gaussian psi (x) = e ^(-ax^2) can be an eigenfunction of H(hat) for harmonic oscillator 1. Compute T(hat)*psi 2. Compute Vhat* psi - assume V operator is 1/2w^2x^2 3. Write out Hbar*psi and identify terms so Hber*psi=E*psi is true 4. From cancellation find a 5. insert back a to Schrodinger eq above and find Earrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON