Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.4, Problem 2.21P
(a)
To determine
Normalize
(b)
To determine
Find
(c)
To determine
Find
(d)
To determine
Find
(e)
To determine
Whether the uncertainty principle holds? At what time t does the system come closest to the uncertainty limit?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Given that at time t = 0 a particle’s wave function is given by ψ(x, 0) =Ax/a, if 0 ≤ x ≤ a,A(b − x)/(b − a), if a ≤ x ≤ b, with A0, Otherwise.a and b as constants, answer the following questions;
a) Find the normalization constant A in terms of the constants a and b.
b) Sketch ψ(x, 0) as a function of x.
c) Where is the particle most likely to be found at time t = 0?
d) What is the probability of finding the particle to the left of a?
An electron with energy E= +4.80 eV is put in an infinite potential well with U(x) =infinity for x<0 and x>L. Of course, U(x) = 0 for 0<x<L. Find the largest amount of time that the electron can exist outside the box. Draw and Label a figure.
Problem 3. Consider the two example systems from quantum mechanics. First, for a
particle in a box of length 1 we have the equation
h² d²v
2m dx²
EV,
with boundary conditions (0) = 0 and (1) = 0.
Second, the Quantum Harmonic Oscillator (QHO)
V = EV
h² d²
2m da² +ka²)
1
+kx²
2
(a) Write down the states for both systems. What are their similarities and differences?
(b) Write down the energy eigenvalues for both systems. What are their similarities
and differences?
(c) Plot the first three states of the QHO along with the potential for the system.
(d) Explain why you can observe a particle outside of the "classically allowed region".
Hint: you can use any state and compute an integral to determine a probability of
a particle being in a given region.
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- ▼ Part A For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ap at distance aB? ▸ View Available Hint(s) 15. ΑΣΦ ? Part B For an electron in the 1s state of hydrogen, what is the probability of being in a spherical shell of thickness 1.00×10-2 ag at distance ag from the proton? ▸ View Available Hint(s) [5] ΑΣΦ ? Submit Submitarrow_forwardSubject Quantum Mechanics. Wave function normalization and superposition of solutions. Wavel functions, ψ1 and ψ2 both normalized. Find a relationship between A and B such that the superposition Aψ1 + Bψ2 is also a normalized solution. I'm having trouble with the integral of |Aψ1 + Bψ2|2 dx. Thank you!arrow_forwardIn your research on new solid-state devices, you are studying a solid-state structure that can be modeled accurately as an electron in a one-dimensional infinite potential well (box) of width L. In one of your experiments, electromagnetic radiation is absorbed in transitions in which the initial state is the n = 1 ground state. You measure that light of frequency f = 9.0x 1014 Hz is absorbed and that the next higher absorbed frequency is 16.9 x 1014 Hz. (a) What is quantum number n for the final state in each of the transitions that leads to the absorption of photons of these frequencies? (b) What is the width L of the potential well? (c) What is the longest wavelength in air of light that can be absorbed by an electron if it is initially in the n = 1 state?arrow_forward
- Consider an electron in the first excited state of a one-dimensional infinite square well of length L=1A°. Calculate the force on either wall during an impact by the electron. Answer Choices: a. 0354 CN 6. 0.245 L c. 0.121μN d. 0.482 ANarrow_forwardCalculate the uncertainty ArAp, with respect to the state 1 1 r -r/2ªY₁0(0,0), √√6 a 2a0 and verify that ArAp, satisfies the Heisenberg uncertainty principle. V2.1.0 (F)= 3/2arrow_forward3. Plane waves and wave packets. In class, we solved the Schrodinger equation for a "free particle" (e.g. when U(x,t) = 0). The correct[solution is (x, t) = Ae(px-Et)/ħ This represents a "plane wave" that exists for all x. However, there is a strange problem with this: if you try to normalize the wave function (determine A by integrating * for all x), you will find an inconsistency (A has to be set equal to 0?). This is because the plane wave stretches to infinity. In order to actually represent a free particle, this solution needs to be handled carefully. Explain in words (and/or diagrams) how we can construct a "wave packet" from the plane wave solution. (Hint 1: consider a superposition of plane waves for a limited range of momentum/energy. Hint 2: have a look at the brief discussion in the middle of pg. 278 and especially pg. 308-309 of the text.)arrow_forward
- A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forwardAn electron has a wavefunction ψ(x)=Ce-|x|/x0 where x0 is a constant and C=1/√x0 for normalization. For this case, obtain expressions for a. ⟨x⟩ and Δx in terms of x0. b. Also calculate the probability that the electron will be found within a standard deviation of its average position, that is, in the range ⟨x⟩-∆x to ⟨x⟩+∆x, and show that this is independent of x0.arrow_forwardI need the answer as soon as possiblearrow_forward
- Problem 1. Two State System Consider an atom with only two states: a ground state with energy 0, and an excited state with energy A. Determine the mean energy (e) and variance in energy (de). Sketch the mean energy versus A/k T.arrow_forwardConsider a particle in the one-dimensional box with the following wave function: psi(x, 0) = Cx(a−x) a. When the system is at psi(x, 0), what is ⟨x(hat)⟩? b. When the system is at psi(x, 0), what is ⟨x(hat)2⟩? c. When the system is at psi(x, 0), what is ⟨p(hat)⟩? d. When the system is at psi(x, 0), what is ⟨p(hat)2⟩? 12. When the system is at psi(x, 0), what is Δx? 13. When the system is at psi(x, 0), what is Δp?arrow_forwardI have an electron that I want to put in a rigid box. How small do I need to make the box so that the speed of my electron in its ground state inside the box will equal to the speed of light? NO NEED TO SOLVE SINCE CORRECT ANSWER IS 1.2 PM SKETCH THE U(X) AND Ψ(X)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON