Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.39P
(a)
To determine
To find the first derivate of
(b)
To determine
Use the result of Problem 2.23(b) to write the second derivative of
(c)
To determine
Evaluate the integral
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question related to Quantum Mechanics : Problem 2.45
Question related to Quantum Mechanics : Problem 1.16
I need the answer as soon as possible
Chapter 2 Solutions
Introduction To Quantum Mechanics
Ch. 2.1 - Prob. 2.1PCh. 2.1 - Prob. 2.2PCh. 2.2 - Prob. 2.3PCh. 2.2 - Prob. 2.4PCh. 2.2 - Prob. 2.5PCh. 2.2 - Prob. 2.6PCh. 2.2 - Prob. 2.7PCh. 2.2 - Prob. 2.8PCh. 2.2 - Prob. 2.9PCh. 2.3 - Prob. 2.10P
Ch. 2.3 - Prob. 2.11PCh. 2.3 - Prob. 2.12PCh. 2.3 - Prob. 2.13PCh. 2.3 - Prob. 2.14PCh. 2.3 - Prob. 2.15PCh. 2.3 - Prob. 2.16PCh. 2.4 - Prob. 2.17PCh. 2.4 - Prob. 2.18PCh. 2.4 - Prob. 2.19PCh. 2.4 - Prob. 2.20PCh. 2.4 - Prob. 2.21PCh. 2.5 - Prob. 2.22PCh. 2.5 - Prob. 2.23PCh. 2.5 - Prob. 2.24PCh. 2.5 - Prob. 2.25PCh. 2.5 - Prob. 2.26PCh. 2.5 - Prob. 2.27PCh. 2.5 - Prob. 2.28PCh. 2.6 - Prob. 2.29PCh. 2.6 - Prob. 2.30PCh. 2.6 - Prob. 2.31PCh. 2.6 - Prob. 2.32PCh. 2.6 - Prob. 2.34PCh. 2.6 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64P
Knowledge Booster
Similar questions
- Consider the function v(1,2) =( [1s(1) 3s(2) + 3s(1) 1s(2)] [x(1) B(2) + B(1) a(2)] Which of the following statements is incorrect concerning p(1,2) ? a. W(1,2) is normalized. Ob. The function W(1,2) is symmetric with respect to the exchange of the space and the spin coordinates of the two electrons. OC. y(1,2) is an eigenfunction of the reference (or zero-order) Hamiltonian (in which the electron-electron repulsion term is ignored) of Li with eigenvalue = -5 hartree. d. The function y(1,2) is an acceptable wave function to describe the properties of one of the excited states of Lit. Oe. The function 4(1,2) is an eigenfunction of the operator S,(1,2) = S;(1) + S,(2) with eigenvalue zero.arrow_forwardDetermine the transmission coefficient for a rectangular barrier (same as Equation 2.127, only with +Vo in the region -a Vo (note that the wave function inside the barrier is different in the three cases). Partial answer: For Earrow_forwardProblem 1.17 A particle is represented (at time=0) by the wave function A(a²-x²). if-a ≤ x ≤+a. 0, otherwise. 4(x, 0) = { (a) Determine the normalization constant A. (b) What is the expectation value of x (at time t = 0)? (c) What is the expectation value of p (at time t = 0)? (Note that you cannot get it from p = md(x)/dt. Why not?) (d) Find the expectation value of x². (e) Find the expectation value of p².arrow_forwardProblem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct to three significant digits) of finding the particle outside the classically allowed region? Hint: Classically, the energy of an oscillator is E = (1/2) ka² = (1/2) mo²a², where a is the amplitude. So the “classically allowed region" for an oscillator of energy E extends from –/2E/mw² to +/2E/mo². Look in a math table under “Normal Distribution" or "Error Function" for the numerical value of the integral, or evaluate it by computer.arrow_forwardWrite down the equations and the associated boundary conditions for solving particle in a 1-D box of dimension L with a finite potential well, i.e., the potential energy U is zero inside the box, but finite outside the box. Specifically, U = U₁ for x L. Assuming that particle's energy E is less than U, what form do the solutions take? Without solving the problem (feel free to give it a try though), qualitatively compare with the case with infinitely hard walls by sketching the differences in wave functions and probability densities and describing the changes in particle momenta and energy levels (e.g., increasing or decreasing and why), for a given quantum number.arrow_forwardLet's consider the two-qubit state 3 |) = 100)+101) +110). a) Find the expectation values for the values of both qubits separately. b) The product of qubit values is represented by the operator b₁b2 = (ô× 1) (I Øô) = (ô ❀ô), where bn is the observable for the value of qubit n. Find the expectation value for the product. For statistically independent quantities the expectation value of their product is the product of their expectation values. Are the values of the qubits correlated in state |V)? c) Show that the state cannot be expressed as a product state, i.e., it is an entangled state.arrow_forwardSolve the time-independent Schrödinger equation with appropriate boundary conditions for an infinite square well centered at the origin [V (x) = 0, for -a/2 < x < +a/2; V (x) = 00 otherwise]. Check that your allowed energies are consistent with mine (Equation 2.23), and confirm that your y's can be obtained from mine (Equation 2.24) by the substitution x x - a/2.arrow_forwardConsider the half oscillator" in which a particle of mass m is restricted to the region x > 0 by the potential energy U(x) = 00 for a O where k is the spring constant. What are the energies of the ground state and fırst excited state? Explain your reasoning. Give the energies in terms of the oscillator frequency wo = Vk/m. Formulas.pdf (Click here-->)arrow_forwardplease provide detailed solution for a to c, thank youarrow_forward2.4. A particle moves in an infinite cubic potential well described by: V (x1, x2) = {00 12= if 0 ≤ x1, x2 a otherwise 1/2(+1) (a) Write down the exact energy and wave-function of the ground state. (2) (b) Write down the exact energy and wavefunction of the first excited states and specify their degeneracies. Now add the following perturbation to the infinite cubic well: H' = 18(x₁-x2) (c) Calculate the ground state energy to the first order correction. (5) (d) Calculate the energy of the first order correction to the first excited degenerated state. (3) (e) Calculate the energy of the first order correction to the second non-degenerate excited state. (3) (f) Use degenerate perturbation theory to determine the first-order correction to the two initially degenerate eigenvalues (energies). (3)arrow_forwardProblem 2.2 Show that E must exceed the minimum value of V (x), for every normalizable solution to the time-independent Schrödinger equation. What is the classical analog to this statement? Hint: Rewrite Equation 2.5 in the form d² 2m [V(x) - E]; dx² if E < Vmin, then and its second derivative always have the same sign-argue that such a function cannot be normalized. h² d² 2m dx² + Vy = Ev. (2.5)arrow_forwardQuestion related to Quantum Mechanics : Problem 2.21arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON