College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 25, Problem 34MCQ
A 6.0 mW vertically polarized laser beam passes through a polarizing filler whose axis is 75° from vertical. What is the laser beam power after passing through the filter?
A. 0.40 mW
B. 1.0 mW
C. 1.6 mW
D. 5.6 mW
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 25 - Prob. 1CQCh. 25 - The rapid vibration accompanying the swimming...Ch. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - The power lines that run through your neighborhood...Ch. 25 - The magnetic flux passing through a coil of wire...Ch. 25 - There is a counterclockwise induced current in the...Ch. 25 - A magnet dropped through a clear plastic tube...
Ch. 25 - The conducting loop in Figure Q25.11 is moving...Ch. 25 - Figure Q25.12 shows two concentric, conducting...Ch. 25 - Figure Q25.13 shows conducting loops next to each...Ch. 25 - Two loops of wire are stacked vertically, one...Ch. 25 - Prob. 15CQCh. 25 - A bar magnet is pushed toward a loop of wire, as...Ch. 25 - Prob. 17CQCh. 25 - A metal wire is resting on a U-shaped conducting...Ch. 25 - Prob. 19CQCh. 25 - Old-fashioned roof-mounted television antennas...Ch. 25 - An AM radio detects the oscillating magnetic field...Ch. 25 - Prob. 22CQCh. 25 - Prob. 23CQCh. 25 - The frequency of a beam of light is increased but...Ch. 25 - Arc welding uses electric current to make an...Ch. 25 - A circular loop of wire has an area of 0.30 m2. It...Ch. 25 - In Figure Q25.27, a square loop is rotating in the...Ch. 25 - A diamond-shaped loop of wire is pulled at a...Ch. 25 - Figure Q25.29 shows a triangular loop of wire in a...Ch. 25 - A device called a flip coil can be used to measure...Ch. 25 - The electromagnetic waves that carry FM radio...Ch. 25 - The beam from a laser is focused with a lens,...Ch. 25 - A spacecraft in orbit around the moon measures its...Ch. 25 - A 6.0 mW vertically polarized laser beam passes...Ch. 25 - Communication with submerged submarines via radio...Ch. 25 - Prob. 36MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - A l0-cm-long wire is pulled along a U-shaped...Ch. 25 - Figure P25.4 shows a 15-cm-long metal rod pulled...Ch. 25 - Prob. 5PCh. 25 - In the rainy season, the Amazon flows fast and...Ch. 25 - A delivery truck with 2.8-m-high aluminum sides is...Ch. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - At a typical location in the United States, the...Ch. 25 - Prob. 13PCh. 25 - A magnet and a coil are oriented as shown in...Ch. 25 - A 1000-turn coil of wire 2.0 cm in diameter is in...Ch. 25 - Figure P25.I6 shows a 100-turn coil of wire of...Ch. 25 - Figure P25.17 shows a 10-cm-diameter loop in three...Ch. 25 - The plane of a loop of wire is perpendicular to a...Ch. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - A 5.0-cm-diameter loop of wire has resistance 1.2...Ch. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - A microwave oven operates at 2.4 GHz with an...Ch. 25 - The maximum allowed leakage of microwave radiation...Ch. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - At what distance from a 10 mW point source of...Ch. 25 - Prob. 32PCh. 25 - A radio antenna broadcasts a 1.0 MHz radio wave...Ch. 25 - A 200 MW laser pulse is focused with a lens to a...Ch. 25 - The intensity of a polarized electromagnetic wave...Ch. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - The polarization of a helium-neon laser can change...Ch. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - One recent study has shown that x rays with a...Ch. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - A particular species of copepod, a small marine...Ch. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - While using a dimmer switch to investigate a new...Ch. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - A python can detect thermal radiation with...Ch. 25 - If astronomers look toward any point in outer...Ch. 25 - A 100-turn, 2.0-cm diameter coil is at rest in a...Ch. 25 - A 25-turn, 10.0-cm-diameter coil is oriented in a...Ch. 25 - People immersed in strong unchanging magnetic...Ch. 25 - Prob. 61GPCh. 25 - Prob. 62GPCh. 25 - A 20-cm-long, zero-resistance wire is pulled...Ch. 25 - A TMS (transeranial magnetic stimulation) device...Ch. 25 - The 10-cm-wide, zero-resistance wire shown in...Ch. 25 - Experiments to study vision often need to track...Ch. 25 - A LASIK vision correction system uses a laser that...Ch. 25 - When the Voyager 2 spacecraft passed Neptune in...Ch. 25 - A new cordless phone emits 4.0 mW at 5.8 GHz. The...Ch. 25 - In reading the instruction manual that came with...Ch. 25 - Unpolarized light passes through a vertical...Ch. 25 - Prob. 73GPCh. 25 - Prob. 74GPCh. 25 - What is the wavelength of 27 MHz radio waves? A....Ch. 25 - If the frequency of the radio waves is increased,...Ch. 25 - Prob. 77MSPPCh. 25 - The metal detector will not detect insulators...Ch. 25 - A metal detector can detect the presence of metal...Ch. 25 - Which of the following changes would not produce a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Draw the mechanism for the hydroxide ion-catalyzed cleavage of fructose-l.6-bisphosphate.
Organic Chemistry (8th Edition)
WRITE ABOUT A THEME: INTERACTIONS In a short essay (100-150 words), identify the factor or factors in Figure 53...
Campbell Biology (11th Edition)
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A jet airplane with a 75.0 m wingspan is flying at 280 m/s. What emf is induced between wing tips if the vertical component 01 the Earth’s field is 3.00105T ? (b) Is an emf of this magnitude likely to have any consequences? Explain.arrow_forwardA spherical interplanetary grain of dust of radius 0.2 m is at a distance r1 from the Sun. The gravitational force exerted by the Sun on the grain just balances the force due to radiation pressure from the Sun's light. (i) Assume the grain is moved to a distance 2r1 from the Sun and released. At this location, what is the net force exerted on the grain? (a) toward the Sun (b) away from the Sun (c) zero (d) impossible to determine without knowing the mass of the grain (ii) Now assume the grain is moved back to its original location at r1, compressed so that it crystallizes into a sphere with significantly higher density, and then released. In this situation, what is the net force exerted on the grain? Choose from the same possibilities as in part (i).arrow_forwardCASE STUDY In Example 34.6 (page 1111), we imagined equipping 1950DA, an asteroid on a collision course with the Earth, with a solar sail in hopes of ejecting it from the solar system. We found that the enormous size required for the solar sail makes the plan impossible at this time. Of course, there is no need to eject such an object from the solar system: we only need to change the orbit. A much more pressing problem is Apophis, a 300-m asteroid that may be on a collision course with the Earth and is due to come by on April 13, 2029. It is unlikely to hit the Earth on that pass, but it will return again in 2036. If Apophis passes through a 600-m keyhole on its 2029 pass, it is expected to hit the Earth in 2036. causing great damage. There are plans to deflect Apophis when it comes by in 2029. For example, we could hit it with a 10- to 150-kg impactor accelerated by a solar sail. The impactor is launched from the Earth to start orbiting the Sun in the same direction as the Earth and Apophis. The idea is to use a solar sail to accelerate the impactor so that it reverses direction and collides head-on with Apophis at 8090 km/s and thereby keeps Apophis out of the keyhole. Consider the momentum in the impactors orbit (Fig. P34.75) when the solar sail makes an angle of = 60 with the tangent to its orbit. Current solar sails may be about 40 m on a side, but the hope is to construct some that are about 160 m on a side. Estimate the impactors tangential acceleration when it is about 1 AU from the Sun. Keep in mind that the sail is neither a perfect absorber nor a perfect reflector, and a heavier impactor would presumably be equipped with a larger sail. Dont be surprised by what may seem like a very small acceleration. FIGURE P34.75arrow_forward
- A particle of cosmic dust has a density =2.0g/cm3 , (a) Assuming the dust particles are spherical and light absorbing, and are at the same distance as Earth from the Sun, determine the particle size for which radiation pressure from sunlight is equal to the Sun's force of gravity on the dust particle, (b) Explain how the forces compare if the particle radius is smaller, (c) Explain what this implies about the sizes of dust particle likely to be present in the inner solar system compared with outside the Oort cloud.arrow_forwardRadio waves normally have their E and B fields in specific directions, whereas visible light usually has its E and B fields in random and rapidly changing directions that are perpendicular to each other and to the propagation direction. Can you explain why?arrow_forwardUnreasonable Results A researcher measures the wavelength of a 1.20-GHz electromagnetic wave to be 0.500 m. (a) Calculate the speed at which this wave propagates. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- During normal bee?ng, the heat creates a maximum 4.00mv potential across 0.300 m of a person’s chest, creating a 1.00-Hz electromagnetic wave. (a) What is the maximum electric field strength created? (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? (c) What is the wavelength of the electromagnetic wave?arrow_forwardLasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time—called pulsed lasers. They are used to initiate nuclear fusion, for example. Such a laser may produce an electromagnetic wave with a maximum electric field strength of 1.001011 V/m for a time of 1.00 ns. (a) What is the maximum magnetic field strength in the wave? (b) What is the intensity of the beam? (c) What energy does it deliver on an 1.00-mm2 area?arrow_forward(a) An oxygen16 ion with a mass at 2.661026kg travels at 5.00106m/s perpendicular to a 1.20T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the radio of this charge to the charge of an electron? (c) Discuss why the radio found in (b) should be an integer.arrow_forward
- (a) The distance to Polaris, the North Star, is approximately 6.44 1018 m. If Polaris were to burn out today, how many wars would it take to see it disappear? (b) How long does it take sunlight to reach Earth? (c) How long does it take a microwave signal to travel from Earth to the Moon and back? (The distance from Earth to the Moon is 3.84 105 km.)arrow_forwardA certain 50.0-Hz AC power line radiates an electromagnetic wave having a maximum electric field strength of 13.0 kV/m. (a) What is the wavelength of this very low frequency electromagnetic wave? (b) What is its maximum magnetic field strength?arrow_forwardA dish antenna with a diameter of 20.0 m receives (at normal incidence) a radio signal from a distant source, as shown in Figure P21.73. The radio signal is a continuous sinusoidal wave with amplitude Emax = 0.20 V/m. Assume the antenna absorbs all the radiation that falls on the dish. (a) What is the amplitude of the magnetic field in this Figure P21.73 wave? (b) What is the intensity of the radiation received by the antenna? (c) What is the power received by the antenna?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY