Experiments to study vision often need to track the movements of a subject’s eye. One way of doing so is to have the subject sit in a magnetic field while wearing special contact lenses that have a coil of very fine wire circling the edge. A current is induced in the coil each time the subject rotates his eye. Consider an experiment in which a 20-turn, 6.0-mm-diameter coil of wire circles the subject’s cornea while a 1.0 T magnetic field is directed as shown in Figure P25.66. The subject begins by looking straight ahead. What emf is induced in the coil if the subject shifts his gaze by 5.0° in 0.20 s?
Experiments to study vision often need to track the movements of a subject’s eye. One way of doing so is to have the subject sit in a magnetic field while wearing special contact lenses that have a coil of very fine wire circling the edge. A current is induced in the coil each time the subject rotates his eye. Consider an experiment in which a 20-turn, 6.0-mm-diameter coil of wire circles the subject’s cornea while a 1.0 T magnetic field is directed as shown in Figure P25.66. The subject begins by looking straight ahead. What emf is induced in the coil if the subject shifts his gaze by 5.0° in 0.20 s?
Experiments to study vision often need to track the movements of a subject’s eye. One way of doing so is to have the subject sit in a magnetic field while wearing special contact lenses that have a coil of very fine wire circling the edge. A current is induced in the coil each time the subject rotates his eye. Consider an experiment in which a 20-turn, 6.0-mm-diameter coil of wire circles the subject’s cornea while a 1.0 T magnetic field is directed as shown in Figure P25.66. The subject begins by looking straight ahead. What emf is induced in the coil if the subject shifts his gaze by 5.0° in 0.20 s?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY