College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 47P
To determine
The number of photons per second.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The intensity of electromagnetic radiation from the sun reaching the earth’s upper atmosphere is 1.37 kW/m2. Assuming an average wavelength of 680 nm for this radiation, find the number of photons per second that strike a 1.00 m2 solar panel directly facing the sun on an orbiting satellite.
The energy flux of sunlight reaching the surface of the earth is 1.388 × 103 W/m2. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.
Mammography is an x-ray imaging procedure for breast cancer
diagnosis and screening. Assume that 20ke V x-ray is used in
mammography. Also assume that the breast of a patient is 6 cm in
thickness (soft tissue), and the propagation speed of x-ray photons in
soft tissue is about the same as in vacuum. How long will it take for x-
ray photons to travel through the breast?
Chapter 25 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 25 - Prob. 1CQCh. 25 - The rapid vibration accompanying the swimming...Ch. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - The power lines that run through your neighborhood...Ch. 25 - The magnetic flux passing through a coil of wire...Ch. 25 - There is a counterclockwise induced current in the...Ch. 25 - A magnet dropped through a clear plastic tube...
Ch. 25 - The conducting loop in Figure Q25.11 is moving...Ch. 25 - Figure Q25.12 shows two concentric, conducting...Ch. 25 - Figure Q25.13 shows conducting loops next to each...Ch. 25 - Two loops of wire are stacked vertically, one...Ch. 25 - Prob. 15CQCh. 25 - A bar magnet is pushed toward a loop of wire, as...Ch. 25 - Prob. 17CQCh. 25 - A metal wire is resting on a U-shaped conducting...Ch. 25 - Prob. 19CQCh. 25 - Old-fashioned roof-mounted television antennas...Ch. 25 - An AM radio detects the oscillating magnetic field...Ch. 25 - Prob. 22CQCh. 25 - Prob. 23CQCh. 25 - The frequency of a beam of light is increased but...Ch. 25 - Arc welding uses electric current to make an...Ch. 25 - A circular loop of wire has an area of 0.30 m2. It...Ch. 25 - In Figure Q25.27, a square loop is rotating in the...Ch. 25 - A diamond-shaped loop of wire is pulled at a...Ch. 25 - Figure Q25.29 shows a triangular loop of wire in a...Ch. 25 - A device called a flip coil can be used to measure...Ch. 25 - The electromagnetic waves that carry FM radio...Ch. 25 - The beam from a laser is focused with a lens,...Ch. 25 - A spacecraft in orbit around the moon measures its...Ch. 25 - A 6.0 mW vertically polarized laser beam passes...Ch. 25 - Communication with submerged submarines via radio...Ch. 25 - Prob. 36MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - A l0-cm-long wire is pulled along a U-shaped...Ch. 25 - Figure P25.4 shows a 15-cm-long metal rod pulled...Ch. 25 - Prob. 5PCh. 25 - In the rainy season, the Amazon flows fast and...Ch. 25 - A delivery truck with 2.8-m-high aluminum sides is...Ch. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - At a typical location in the United States, the...Ch. 25 - Prob. 13PCh. 25 - A magnet and a coil are oriented as shown in...Ch. 25 - A 1000-turn coil of wire 2.0 cm in diameter is in...Ch. 25 - Figure P25.I6 shows a 100-turn coil of wire of...Ch. 25 - Figure P25.17 shows a 10-cm-diameter loop in three...Ch. 25 - The plane of a loop of wire is perpendicular to a...Ch. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - A 5.0-cm-diameter loop of wire has resistance 1.2...Ch. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - A microwave oven operates at 2.4 GHz with an...Ch. 25 - The maximum allowed leakage of microwave radiation...Ch. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - At what distance from a 10 mW point source of...Ch. 25 - Prob. 32PCh. 25 - A radio antenna broadcasts a 1.0 MHz radio wave...Ch. 25 - A 200 MW laser pulse is focused with a lens to a...Ch. 25 - The intensity of a polarized electromagnetic wave...Ch. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - The polarization of a helium-neon laser can change...Ch. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - One recent study has shown that x rays with a...Ch. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - A particular species of copepod, a small marine...Ch. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - While using a dimmer switch to investigate a new...Ch. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - A python can detect thermal radiation with...Ch. 25 - If astronomers look toward any point in outer...Ch. 25 - A 100-turn, 2.0-cm diameter coil is at rest in a...Ch. 25 - A 25-turn, 10.0-cm-diameter coil is oriented in a...Ch. 25 - People immersed in strong unchanging magnetic...Ch. 25 - Prob. 61GPCh. 25 - Prob. 62GPCh. 25 - A 20-cm-long, zero-resistance wire is pulled...Ch. 25 - A TMS (transeranial magnetic stimulation) device...Ch. 25 - The 10-cm-wide, zero-resistance wire shown in...Ch. 25 - Experiments to study vision often need to track...Ch. 25 - A LASIK vision correction system uses a laser that...Ch. 25 - When the Voyager 2 spacecraft passed Neptune in...Ch. 25 - A new cordless phone emits 4.0 mW at 5.8 GHz. The...Ch. 25 - In reading the instruction manual that came with...Ch. 25 - Unpolarized light passes through a vertical...Ch. 25 - Prob. 73GPCh. 25 - Prob. 74GPCh. 25 - What is the wavelength of 27 MHz radio waves? A....Ch. 25 - If the frequency of the radio waves is increased,...Ch. 25 - Prob. 77MSPPCh. 25 - The metal detector will not detect insulators...Ch. 25 - A metal detector can detect the presence of metal...Ch. 25 - Which of the following changes would not produce a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? in minutes (b) What is the energy in eV of a photon with a wavelength of 533 nm? in eV (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV? in metersarrow_forwardWhat is the frequency in Hz of radiation required to supply a total energy of 1.12 x 102 J from 8.51 x 1027 photons?arrow_forwardThe human body has a surface area of approximately 1.8 m2, a surface temperature of approximately 30°C, and a typical emissivity at infrared wavelengths of e = 0.97. If we make the approximation that all photons are emitted at the wavelength of peak intensity, how many photons per second does the body emit?arrow_forward
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? min (b) What is the energy in ev of a photon with a wavelength of 478 nm? ev (c) What is the wavelength (in m) of a photon with an energy of 1.03 eV?arrow_forward(a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.32 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 628 nm? 1.98 eV (c) What is the wavelength (in m) of a photon with an energy of 1.13 eV? 1.76*10**-6arrow_forwardQuestion: The electronic structure of atoms and molecules may be investigated using photoelectron spectroscopy. An electron in a photoelectron spectrometer is accelerated from rest by a uniform electric field to a speed of 420 km s−1 in 10 µs. Determine the kinetic energy of the electron?arrow_forward
- The most energetic electromagnetic waves in the universe are gamma-rays from gamma ray bursts (GRBs) from collapsing massive stars, observed by satellites with expected energies of 100 TeV (1 TeV = 1012eV). (a) (10) What is the frequency of these energetic gamma ray photons? 1 eV = 1.60 x 10-19 J. (b) What is the wavelength? 2. An astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth’s surface with a wavelength of 532nm and beam divergence (width) of 10-6 radians or 5.73 x 10-15° << 1°. The indices of refraction in free space and the atmosphere are n0 o 1.00000 ..., and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near r ® 0) to higher density at the surface, refraction can be modeled as a ‘surface’ mid-atmosphere just like classic Snell’s Law calculations. (a) When the ISS is directly…arrow_forwardA laser emits 5.73 × 1015 photons per second in a beam of light that has a diameter of 2.30 mm and a wavelength of 514.5 nm. Determine (a) the average electric field strength and (b) the average magnetic field strength for the electromagnetic wave that constitutes the beam. (a) Number M. (b) Number i Units Unitsarrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.37 x 10¹5 Hz. nm (b) What is its wavelength in ethyl alcohol? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the ethyl alcohol? O The energy of the photon changes. O The energy of the photon does not change. Explain.arrow_forward
- (a) How many minutes does it take a photon to travel from the Sun to the Earth? 8.33 It can be useful to remember that light travels from the Sun to Earth in about 8.32 minutes. min (b) What is the energy in eV of a photon with a wavelength of 608 nm? 2.03 ev (c) What is the wavelength (in m) of a photon with an energy of 1.73 eV? 716 x marrow_forwardA sample of helium gas is excited with an electric current, which causes the helium to emit electromagnetic radiation when the helium atoms return to their ground state. You measure the maximum magnitude of the electric field of the emitted radiation to be 0.0074 V/m. Based on your measurement, what is the maximum magnitude of the magnetic field in the radiation?arrow_forwardThe sun’s surface temperature is about 5800 K.(a) About how much electromagnetic wave energy does a cubic meter of space near thesun’s surface contain?A cubic meter of space near the sun's surface contains______ J/m3 ofelectromagnetic wave energy.(b) What is the most probable photon energy εp (in eV) for photons emitted by the sun?The most probable energy εp for photons emitted by the sun is______ eV.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning