College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 25, Problem 24P
To determine
To find: The required induced emf.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The magnetic field at the earth’s surface can vary in response to solar activity. During one intense solar storm, the vertical component of the magnetic field changed by 2.8 μT per minute, causing voltage spikes in large loops of the power grid that knocked out power in parts of Canada. What emf is induced in a square 100 km on a side by this rate of change of field?
What is the peak emf generated by rotating a 1000-turn, 20.0 cm diameter coil in the Earth’s 5.00 X 10-5 T magnetic field, given the plane of the coil is originally perpendicular to the Earth’s field and is rotated to be parallel to the field in 10.0 ms?
a. Find an expression for the instantaneous rate of change in magnetic flux as a function of time. (the rate of change of f(t)=cos(ωt) is f′(t)=−ωsin(ωt).
b. What is the average power dissipated by the 1.0Ω lightbulb?
Chapter 25 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 25 - Prob. 1CQCh. 25 - The rapid vibration accompanying the swimming...Ch. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - The power lines that run through your neighborhood...Ch. 25 - The magnetic flux passing through a coil of wire...Ch. 25 - There is a counterclockwise induced current in the...Ch. 25 - A magnet dropped through a clear plastic tube...
Ch. 25 - The conducting loop in Figure Q25.11 is moving...Ch. 25 - Figure Q25.12 shows two concentric, conducting...Ch. 25 - Figure Q25.13 shows conducting loops next to each...Ch. 25 - Two loops of wire are stacked vertically, one...Ch. 25 - Prob. 15CQCh. 25 - A bar magnet is pushed toward a loop of wire, as...Ch. 25 - Prob. 17CQCh. 25 - A metal wire is resting on a U-shaped conducting...Ch. 25 - Prob. 19CQCh. 25 - Old-fashioned roof-mounted television antennas...Ch. 25 - An AM radio detects the oscillating magnetic field...Ch. 25 - Prob. 22CQCh. 25 - Prob. 23CQCh. 25 - The frequency of a beam of light is increased but...Ch. 25 - Arc welding uses electric current to make an...Ch. 25 - A circular loop of wire has an area of 0.30 m2. It...Ch. 25 - In Figure Q25.27, a square loop is rotating in the...Ch. 25 - A diamond-shaped loop of wire is pulled at a...Ch. 25 - Figure Q25.29 shows a triangular loop of wire in a...Ch. 25 - A device called a flip coil can be used to measure...Ch. 25 - The electromagnetic waves that carry FM radio...Ch. 25 - The beam from a laser is focused with a lens,...Ch. 25 - A spacecraft in orbit around the moon measures its...Ch. 25 - A 6.0 mW vertically polarized laser beam passes...Ch. 25 - Communication with submerged submarines via radio...Ch. 25 - Prob. 36MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - A l0-cm-long wire is pulled along a U-shaped...Ch. 25 - Figure P25.4 shows a 15-cm-long metal rod pulled...Ch. 25 - Prob. 5PCh. 25 - In the rainy season, the Amazon flows fast and...Ch. 25 - A delivery truck with 2.8-m-high aluminum sides is...Ch. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - At a typical location in the United States, the...Ch. 25 - Prob. 13PCh. 25 - A magnet and a coil are oriented as shown in...Ch. 25 - A 1000-turn coil of wire 2.0 cm in diameter is in...Ch. 25 - Figure P25.I6 shows a 100-turn coil of wire of...Ch. 25 - Figure P25.17 shows a 10-cm-diameter loop in three...Ch. 25 - The plane of a loop of wire is perpendicular to a...Ch. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - A 5.0-cm-diameter loop of wire has resistance 1.2...Ch. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - A microwave oven operates at 2.4 GHz with an...Ch. 25 - The maximum allowed leakage of microwave radiation...Ch. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - At what distance from a 10 mW point source of...Ch. 25 - Prob. 32PCh. 25 - A radio antenna broadcasts a 1.0 MHz radio wave...Ch. 25 - A 200 MW laser pulse is focused with a lens to a...Ch. 25 - The intensity of a polarized electromagnetic wave...Ch. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - The polarization of a helium-neon laser can change...Ch. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - One recent study has shown that x rays with a...Ch. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - A particular species of copepod, a small marine...Ch. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - While using a dimmer switch to investigate a new...Ch. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - A python can detect thermal radiation with...Ch. 25 - If astronomers look toward any point in outer...Ch. 25 - A 100-turn, 2.0-cm diameter coil is at rest in a...Ch. 25 - A 25-turn, 10.0-cm-diameter coil is oriented in a...Ch. 25 - People immersed in strong unchanging magnetic...Ch. 25 - Prob. 61GPCh. 25 - Prob. 62GPCh. 25 - A 20-cm-long, zero-resistance wire is pulled...Ch. 25 - A TMS (transeranial magnetic stimulation) device...Ch. 25 - The 10-cm-wide, zero-resistance wire shown in...Ch. 25 - Experiments to study vision often need to track...Ch. 25 - A LASIK vision correction system uses a laser that...Ch. 25 - When the Voyager 2 spacecraft passed Neptune in...Ch. 25 - A new cordless phone emits 4.0 mW at 5.8 GHz. The...Ch. 25 - In reading the instruction manual that came with...Ch. 25 - Unpolarized light passes through a vertical...Ch. 25 - Prob. 73GPCh. 25 - Prob. 74GPCh. 25 - What is the wavelength of 27 MHz radio waves? A....Ch. 25 - If the frequency of the radio waves is increased,...Ch. 25 - Prob. 77MSPPCh. 25 - The metal detector will not detect insulators...Ch. 25 - A metal detector can detect the presence of metal...Ch. 25 - Which of the following changes would not produce a...
Knowledge Booster
Similar questions
- A parallel-plate capacitor with plate separation d is connected to a source of emf that places a time-dependent voltage V(t) across its circular plates of radius r0and area (a) Write an expression for the time rate of change of energy inside the capacitor in terms of V(t) and dV(t)/ dt. (b) Assuming that V(t) is increasing with time, identify the directions of the elecuic field lines inside the capacitor and of the magnetic field lines at the edge of the region between the plates, and then the direction of the Poynting vector S at this location. (c) Obtain expressions for the time dependence of E(t), for B(t) from the displacement current, and for the magnitude of the Poynting vector at the edge of the region between the plates. (d) From S , obtain an expression In terms of ‘(t) and dV(t)/dt for the rate at which electromagnetic field energy the region between the plates. (e) Compare the results of pails (a) and (d) and explain the relationship between them.arrow_forwardA thin conducting bar (60.0 cm long) aligned in the positive y direction is moving with velocity v=(1.25m/s)i in a region with a spatially uniform 0.400-T magnetic field directed at an angle of 36.0 above the xy plane. a. What is the magnitude of the emf induced along the length of the moving bar? b. Which end of the bar is positively charged?arrow_forwardA coil of area 0.100 m2 is rotating at 60.0 rev/s with the axis of rotation perpendicular to a 0.200-T magnetic field. (a) If the coil has 1 000 turns, what is the maximum emf generated in it? (b) What is the orientation of the coil with respect to the magnetic field when the maximum induced voltage occurs?arrow_forward
- (a) A jet airplane with a 75.0 m wingspan is flying at 280 m/s. What emf is induced between wing tips if the vertical component 01 the Earth’s field is 3.00105T ? (b) Is an emf of this magnitude likely to have any consequences? Explain.arrow_forwardThe square armature coil of an alternating current generator has 200 turns and is 20.0 cm on side. When it rotates at 3600 rpm, its peak output voltage is 120 V. (a) Wliat is the frequency' of the output voltage? (b) What is the strength of the magnetic field in which the coil is turning?arrow_forwardA 200-turn flat coil of wire 30.0 cm in diameter acts as an antenna for FM radio at a frequency of 100 MHz. The magnetic field of the incoming electromagnetic wave is perpendicular to the coil and has a maximum strength of 1.001012T . (a) What power is incident on the coil? (b) What average emf is induced in the coil over one-fourth of a cycle? (c) If the radio receiver has an inductance of 2.50H, what capacitance must it have to resonate at 100 MHz?arrow_forward
- Suppose a uniform magnetic field is perpendicular to the 81211-in. page of your homework and a rectangular metal loop lies on the page. The loops sides line up with the edges of the page. The magnetic field is changing with time as described by B = 3.75 103 t, where B is in teslas and t is in seconds. a. Is the magnetic field increasing or decreasing? b. Find the magnitude of the emf induced in the loop.arrow_forwardA time-dependent uniform magnetic field of magnitude B(t) is confined in a cylindrical region of radius R. A conducting rod of length 2D is placed in the region, as shown below. Show that the emf between the ends of the rod is given by dBdtDR2D2 . ( Hint: To find the between the ends, we need to integrate the electric field from one end to the other. To find the electric field, use Faraday’s law as “Ampere’s law for E”.)arrow_forward(a) If the emf of a coil rotating in a magnetic field is zero at t = 0, and increases to its first peak at t = 0.100 ms, what is the angular velocity of the coil? (b) At what time will its next maximum occur? (c) What is the period of the output? (d) When is the output first one-fourth at its maximum? (e) When is it next one-fourth at its maximum?arrow_forward
- During normal bee?ng, the heat creates a maximum 4.00mv potential across 0.300 m of a person’s chest, creating a 1.00-Hz electromagnetic wave. (a) What is the maximum electric field strength created? (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? (c) What is the wavelength of the electromagnetic wave?arrow_forwardA uniform magnetic field B=5.44104iT passes through a closed surface with a slanted top as shown in Figure P31.59. a. Given the dimensions and orientation of the closed surface shown, what is the magnetic flux through the slanted top of the surface? b. What is the net magnetic flux through the entire closed surface?arrow_forwardUnreasonable results Frustrated by the small Hall voltage obtained in blood flow measurements, a medical physicist decides to increase the applied magnetic field strength to get a 0.500-V output for blood moving at 30.0 cm/s in a 1.50-cm-diameter vessel. (a) What magnetic field strength is needed? (b) What is unreasonable about this result? (C) Which premise is responsible?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning