Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 24, Problem 1P

(I) The two plates of a capacitor hold +2800 μC and −2800 μC of charge, respectively, when the potential difference is 930 V. What is the capacitance?

Blurred answer
Students have asked these similar questions
(I) The two plates of a capacitor hold +2500µ C and -2500 µ C of charge, respectively, when the potential difference is 960 V. What is the capacitance?
(2) An electric charge is stored in a parallel-plate capacitor with capacitance C. The distance between the plates in this capacitor is tripled, keeping the electric charge unchanged. How much work is done from outside in this proc- ess? (a) 3CQ 3Q² (f) (b) 2CQ 2Q² C (e) CQ (h) Q² (d) //co Q² 2C (i) (e) cQ S Q² 3C
(i) A battery is attached to several different capacitors connected in parallel. Which of the following statements is true? O All capacitors have the same charge, and the equivalent capacitance is greater than the capacitance of any of the capacitors in the group. O The potential difference across each capacitor is the same, and the equivalent capacitance is greater than any of the capacitors in the group. O The capacitor with the smallest capacitance carries the largest charge. O The capacitor with the largest capacitance carries the smallest charge. O The potential differences across the capacitors are the same only if the capacitances are the same. (ii) The capacitors are reconnected in series, and the combination is again connected to the battery. From the same choices, choose the one that is true. O All capacitors have the same charge, and the equivalent capacitance is greater than the capacitance of any of the capacitors in the group. O The potential difference across each…

Chapter 24 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 24 - Suppose three identical capacitors are connected...Ch. 24 - A large copper sheet of thickness is placed...Ch. 24 - The parallel plates of an isolated capacitor carry...Ch. 24 - How does the energy in a capacitor change if (a)...Ch. 24 - If the voltage across a capacitor is doubled, the...Ch. 24 - An isolated charged capacitor has horizontal...Ch. 24 - Suppose a battery remains connected to the...Ch. 24 - How does the energy stored in a capacitor change...Ch. 24 - For dielectrics consisting of polar molecules, how...Ch. 24 - A dielectric is pulled out from between the plates...Ch. 24 - We have seen that the capacitance C depends on the...Ch. 24 - What value might we assign to the dielectric...Ch. 24 - (I) The two plates of a capacitor hold +2800 C and...Ch. 24 - (I) How much charge flows from a 12.0-V battery...Ch. 24 - (I) The potential difference between two short...Ch. 24 - (I) The charge on a capacitor increases by 26 C...Ch. 24 - (II) A 7.7-F capacitor is charged by a 125-V...Ch. 24 - (II) An isolated capacitor C1 carries a charge Q0....Ch. 24 - (II) It takes 15 J of energy to move a 0.20-mC...Ch. 24 - (II) A 2.70-F capacitor is charged to 475 V and a...Ch. 24 - (II) Compact ultracapacitors with capacitance...Ch. 24 - (II) In a dynamic random access memory (DRAM)...Ch. 24 - (I) To make a 0.40-F capacitor, what area must the...Ch. 24 - (I) What is the capacitance per unit length (F/m)...Ch. 24 - (I) Determine the capacitance of the Earth,...Ch. 24 - (II) Use Gausss law to show that E=0 inside the...Ch. 24 - (II) Dry air will break down if the electric field...Ch. 24 - (II) An electric field of 4.80 105V/m is desired...Ch. 24 - (II) How strong is the electric field between the...Ch. 24 - (II) A large metal sheet of thickness is placed...Ch. 24 - (III) Small distances are commonly measured...Ch. 24 - (III) In an electrostatic air cleaner...Ch. 24 - (I) The capacitance of a portion of a circuit is...Ch. 24 - (I) (a) Six 3.8-F capacitors are connected in...Ch. 24 - (II) Given three capacitors, C1 = 2.0 F, C2 = 1.5...Ch. 24 - (II) Suppose three parallel-plate capacitors,...Ch. 24 - (II) An electric circuit was accidentally...Ch. 24 - (II) Three conducting plates, each of area A, are...Ch. 24 - (II) Consider three capacitors, of capacitance...Ch. 24 - (II) A 0.50-F and a 0.80-F capacitor are connected...Ch. 24 - (II) In Fig. 2423, suppose C1 = C2 = C3 = C4 = C....Ch. 24 - (II) Suppose in Fig. 2423 that C1 = C2 = C3 = 16.0...Ch. 24 - (II) The switch S in Mg. 2424 is connected...Ch. 24 - (II) (a) Determine the equivalent capacitance...Ch. 24 - FIGURE 2425 Problems 32 and 33. (II) Suppose in...Ch. 24 - (II) Two capacitors connected in parallel produce...Ch. 24 - (II) In the capacitance bridge shown m Fig. 2426,...Ch. 24 - (II) Two capacitors, C1 = 3200 pF and C2 = 1800...Ch. 24 - (II) (a) Determine the equivalent capacitance of...Ch. 24 - (II) In Fig. 2427, let C1 = 2.00 F, C2 = 3.00 F,...Ch. 24 - (III) Suppose one plate of a parallel-plate...Ch. 24 - (III) A voltage V is applied to the capacitor...Ch. 24 - (I) 2200 V is applied to a 2800-pF capacitor. How...Ch. 24 - (I) There is an electric field near the Earths...Ch. 24 - (I) How much energy is stored by the electric...Ch. 24 - (II) A parallel-plate capacitor has fixed charges...Ch. 24 - (II) In Fig. 2427, Let V = 10.0 V and C1 = C2 = C3...Ch. 24 - (II) How much energy must a 28-V battery expend to...Ch. 24 - (II) (a) Suppose the outer radius Ra of a...Ch. 24 - (II) A 2.2-F capacitor is charged by a 12.0-V...Ch. 24 - (II) How much work would be required to remove a...Ch. 24 - (II) (a) Show that each plate of a parallel-plate...Ch. 24 - (II) Show that the electrostatic energy stored in...Ch. 24 - (II) When two capacitors are connected in parallel...Ch. 24 - (II) For commonly used CMOS (complementary metal...Ch. 24 - (I) What is the capacitance of two square parallel...Ch. 24 - (II) Suppose the capacitor in Example 2411 remains...Ch. 24 - (II) How much energy would be stored in the...Ch. 24 - (II) In the DRAM computer chip of Problem 10, the...Ch. 24 - (II) A 3500-pF air-gap capacitor is connected to a...Ch. 24 - (II) Two different dielectrics each fill half the...Ch. 24 - (II) Two different dielectrics fill the space...Ch. 24 - (II) Repeat Problem 60 (Fig. 2431) but assume the...Ch. 24 - (II) Two identical capacitors are connected in...Ch. 24 - (III) A slab of width d and dielectric constant K...Ch. 24 - (III) The quantity of liquid (such as cryogenic...Ch. 24 - (II) Show that the capacitor in Example 2412 with...Ch. 24 - (II) Repeat Example 24-12 assuming the battery...Ch. 24 - (II) Using Example 2412 as a model, derive a...Ch. 24 - (II) In Example 2412 what percent of the stored...Ch. 24 - (III) The capacitor shown in Fig. 2434 is...Ch. 24 - (a) A general rule for estimating the capacitance...Ch. 24 - A cardiac defibrillator is used to shock a heart...Ch. 24 - A homemade capacitor is assembled by placing two...Ch. 24 - An uncharged capacitor is connected to a 34.0-V...Ch. 24 - It takes 18.5 J of energy to move a 13.0-mC charge...Ch. 24 - A huge 3.0-F capacitor has enough stored energy to...Ch. 24 - A coaxial cable, Fig. 2435, consists of an inner...Ch. 24 - The electric field between the plates of a...Ch. 24 - Capacitors can be used as electric charge...Ch. 24 - A parallel-plate capacitor is isolated with a...Ch. 24 - In lightning storms, the potential difference...Ch. 24 - A multilayer film capacitor has a maximum voltage...Ch. 24 - A 3.5 F capacitor is charged by a 12.4-V battery...Ch. 24 - The power supply for a pulsed nitrogen laser has a...Ch. 24 - A parallel-plate capacitor has square plates 12 cm...Ch. 24 - The variable capacitance of an old radio tuner...Ch. 24 - A high-voltage supply can be constructed from a...Ch. 24 - A 175-pF capacitor is connected in series with an...Ch. 24 - A parallel-plate capacitor with plate area 2.0 cm2...Ch. 24 - In the circuit shown in Fig. 2437. C1 = 1.0 F, C2...Ch. 24 - The long cylindrical capacitor shown in Fig. 2438...Ch. 24 - A parallel-plate capacitor has plate area A, plate...Ch. 24 - Consider the use of capacitors as memory cells. A...Ch. 24 - To get an idea how big a farad is, suppose you...Ch. 24 - A student wearing shoes with thin insulating soles...Ch. 24 - A parallel-plate capacitor with plate area A = 2.0...Ch. 24 - Let us try to estimate the maximum static...Ch. 24 - Paper has a dielectric constant K = 3.7 and a...Ch. 24 - (II) Six physics students were each given an air...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY