A student wearing shoes with thin insulating soles is standing on a grounded metal floor when he puts his hand flat against the screen of a CRT computer monitor. The voltage inside the monitor screen, 6.3 mm from his hand, is 25.0 V. The student’s hand and the monitor form a capacitor; the student is a conductor, and there is another capacitor between the floor and his feet. Using reasonable numbers for hand and foot areas, estimate the student’s voltage relative to the floor. Assume vinyl-soled shoes 1 cm thick.
A student wearing shoes with thin insulating soles is standing on a grounded metal floor when he puts his hand flat against the screen of a CRT computer monitor. The voltage inside the monitor screen, 6.3 mm from his hand, is 25.0 V. The student’s hand and the monitor form a capacitor; the student is a conductor, and there is another capacitor between the floor and his feet. Using reasonable numbers for hand and foot areas, estimate the student’s voltage relative to the floor. Assume vinyl-soled shoes 1 cm thick.
A student wearing shoes with thin insulating soles is standing on a grounded metal floor when he puts his hand flat against the screen of a CRT computer monitor. The voltage inside the monitor screen, 6.3 mm from his hand, is 25.0 V. The student’s hand and the monitor form a capacitor; the student is a conductor, and there is another capacitor between the floor and his feet. Using reasonable numbers for hand and foot areas, estimate the student’s voltage relative to the floor. Assume vinyl-soled shoes 1 cm thick.
A solid sphere 22 cm in radius carries 17 μC, distributed uniformly
throughout its volume.
Part A
Find the electric field strength 12 cm from the sphere's center.
Express your answer using two significant figures.
E₁ =
ΜΕ ΑΣΦ
ха
Хь
b
Submit
Previous Answers Request Answer
<☑
× Incorrect; Try Again; 4 attempts remaining
▾
Part B
?
|X|
X.10"
<☑
Find the electric field strength 22 cm from the sphere's center.
Express your answer using two significant figures.
ΜΕ ΑΣΦ
E2 =
Submit
Request Answer
▾
Part C
?
MN/C
Find the electric field strength 44 cm from the sphere's center.
Express your answer using two significant figures.
ΕΠΙ ΑΣΦ
E3 =
Submit
Request Answer
?
MN/C
MN/C
No chatgpt pls
In a naval battle, a battleship is attempting to fire on a destroyer. The battleship is a distance
d1 = 2,150 m
to the east of the peak of a mountain on an island, as shown in the figure below. The destroyer is attempting to evade cannon shells fired from the battleship by hiding on the west side of the island. The initial speed of the shells that the battleship fires is
vi = 245 m/s.
The peak of the mountain is
h = 1,840 m
above sea level, and the western shore of the island is a horizontal distance
d2 = 250 m
from the peak. What are the distances (in m), as measured from the western shore of the island, at which the destroyer will be safe from fire from the battleship? (Note the figure is not to scale. You may assume that the height and width of the destroyer are small compared to d1 and h.)
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.