Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 15Q
A dielectric is pulled out from between the plates of a capacitor which remains connected to a battery. What changes occur to the capacitance, charge on the plates, potential difference, energy stored in the capacitor, and electric field?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 24.1 - Graphs for charge versus voltage are shown in Fig....Ch. 24.2 - Two circular plates of radius 5.0 cm are separated...Ch. 24.2 - What is the capacitance per unit length of a...Ch. 24.3 - Consider two identical capacitors C1 = C2 = 10 F....Ch. 24.5 - Return to the Chapter-Opening Question, page 628,...Ch. 24 - Suppose two nearby conductors carry the same...Ch. 24 - Suppose the separation of plates d in a...Ch. 24 - Suppose one of the plates of a parallel-plate...Ch. 24 - When a battery is connected to a capacitor, why do...Ch. 24 - Describe a sample method of measuring 0 using a...
Ch. 24 - Suppose three identical capacitors are connected...Ch. 24 - A large copper sheet of thickness is placed...Ch. 24 - The parallel plates of an isolated capacitor carry...Ch. 24 - How does the energy in a capacitor change if (a)...Ch. 24 - If the voltage across a capacitor is doubled, the...Ch. 24 - An isolated charged capacitor has horizontal...Ch. 24 - Suppose a battery remains connected to the...Ch. 24 - How does the energy stored in a capacitor change...Ch. 24 - For dielectrics consisting of polar molecules, how...Ch. 24 - A dielectric is pulled out from between the plates...Ch. 24 - We have seen that the capacitance C depends on the...Ch. 24 - What value might we assign to the dielectric...Ch. 24 - (I) The two plates of a capacitor hold +2800 C and...Ch. 24 - (I) How much charge flows from a 12.0-V battery...Ch. 24 - (I) The potential difference between two short...Ch. 24 - (I) The charge on a capacitor increases by 26 C...Ch. 24 - (II) A 7.7-F capacitor is charged by a 125-V...Ch. 24 - (II) An isolated capacitor C1 carries a charge Q0....Ch. 24 - (II) It takes 15 J of energy to move a 0.20-mC...Ch. 24 - (II) A 2.70-F capacitor is charged to 475 V and a...Ch. 24 - (II) Compact ultracapacitors with capacitance...Ch. 24 - (II) In a dynamic random access memory (DRAM)...Ch. 24 - (I) To make a 0.40-F capacitor, what area must the...Ch. 24 - (I) What is the capacitance per unit length (F/m)...Ch. 24 - (I) Determine the capacitance of the Earth,...Ch. 24 - (II) Use Gausss law to show that E=0 inside the...Ch. 24 - (II) Dry air will break down if the electric field...Ch. 24 - (II) An electric field of 4.80 105V/m is desired...Ch. 24 - (II) How strong is the electric field between the...Ch. 24 - (II) A large metal sheet of thickness is placed...Ch. 24 - (III) Small distances are commonly measured...Ch. 24 - (III) In an electrostatic air cleaner...Ch. 24 - (I) The capacitance of a portion of a circuit is...Ch. 24 - (I) (a) Six 3.8-F capacitors are connected in...Ch. 24 - (II) Given three capacitors, C1 = 2.0 F, C2 = 1.5...Ch. 24 - (II) Suppose three parallel-plate capacitors,...Ch. 24 - (II) An electric circuit was accidentally...Ch. 24 - (II) Three conducting plates, each of area A, are...Ch. 24 - (II) Consider three capacitors, of capacitance...Ch. 24 - (II) A 0.50-F and a 0.80-F capacitor are connected...Ch. 24 - (II) In Fig. 2423, suppose C1 = C2 = C3 = C4 = C....Ch. 24 - (II) Suppose in Fig. 2423 that C1 = C2 = C3 = 16.0...Ch. 24 - (II) The switch S in Mg. 2424 is connected...Ch. 24 - (II) (a) Determine the equivalent capacitance...Ch. 24 - FIGURE 2425 Problems 32 and 33. (II) Suppose in...Ch. 24 - (II) Two capacitors connected in parallel produce...Ch. 24 - (II) In the capacitance bridge shown m Fig. 2426,...Ch. 24 - (II) Two capacitors, C1 = 3200 pF and C2 = 1800...Ch. 24 - (II) (a) Determine the equivalent capacitance of...Ch. 24 - (II) In Fig. 2427, let C1 = 2.00 F, C2 = 3.00 F,...Ch. 24 - (III) Suppose one plate of a parallel-plate...Ch. 24 - (III) A voltage V is applied to the capacitor...Ch. 24 - (I) 2200 V is applied to a 2800-pF capacitor. How...Ch. 24 - (I) There is an electric field near the Earths...Ch. 24 - (I) How much energy is stored by the electric...Ch. 24 - (II) A parallel-plate capacitor has fixed charges...Ch. 24 - (II) In Fig. 2427, Let V = 10.0 V and C1 = C2 = C3...Ch. 24 - (II) How much energy must a 28-V battery expend to...Ch. 24 - (II) (a) Suppose the outer radius Ra of a...Ch. 24 - (II) A 2.2-F capacitor is charged by a 12.0-V...Ch. 24 - (II) How much work would be required to remove a...Ch. 24 - (II) (a) Show that each plate of a parallel-plate...Ch. 24 - (II) Show that the electrostatic energy stored in...Ch. 24 - (II) When two capacitors are connected in parallel...Ch. 24 - (II) For commonly used CMOS (complementary metal...Ch. 24 - (I) What is the capacitance of two square parallel...Ch. 24 - (II) Suppose the capacitor in Example 2411 remains...Ch. 24 - (II) How much energy would be stored in the...Ch. 24 - (II) In the DRAM computer chip of Problem 10, the...Ch. 24 - (II) A 3500-pF air-gap capacitor is connected to a...Ch. 24 - (II) Two different dielectrics each fill half the...Ch. 24 - (II) Two different dielectrics fill the space...Ch. 24 - (II) Repeat Problem 60 (Fig. 2431) but assume the...Ch. 24 - (II) Two identical capacitors are connected in...Ch. 24 - (III) A slab of width d and dielectric constant K...Ch. 24 - (III) The quantity of liquid (such as cryogenic...Ch. 24 - (II) Show that the capacitor in Example 2412 with...Ch. 24 - (II) Repeat Example 24-12 assuming the battery...Ch. 24 - (II) Using Example 2412 as a model, derive a...Ch. 24 - (II) In Example 2412 what percent of the stored...Ch. 24 - (III) The capacitor shown in Fig. 2434 is...Ch. 24 - (a) A general rule for estimating the capacitance...Ch. 24 - A cardiac defibrillator is used to shock a heart...Ch. 24 - A homemade capacitor is assembled by placing two...Ch. 24 - An uncharged capacitor is connected to a 34.0-V...Ch. 24 - It takes 18.5 J of energy to move a 13.0-mC charge...Ch. 24 - A huge 3.0-F capacitor has enough stored energy to...Ch. 24 - A coaxial cable, Fig. 2435, consists of an inner...Ch. 24 - The electric field between the plates of a...Ch. 24 - Capacitors can be used as electric charge...Ch. 24 - A parallel-plate capacitor is isolated with a...Ch. 24 - In lightning storms, the potential difference...Ch. 24 - A multilayer film capacitor has a maximum voltage...Ch. 24 - A 3.5 F capacitor is charged by a 12.4-V battery...Ch. 24 - The power supply for a pulsed nitrogen laser has a...Ch. 24 - A parallel-plate capacitor has square plates 12 cm...Ch. 24 - The variable capacitance of an old radio tuner...Ch. 24 - A high-voltage supply can be constructed from a...Ch. 24 - A 175-pF capacitor is connected in series with an...Ch. 24 - A parallel-plate capacitor with plate area 2.0 cm2...Ch. 24 - In the circuit shown in Fig. 2437. C1 = 1.0 F, C2...Ch. 24 - The long cylindrical capacitor shown in Fig. 2438...Ch. 24 - A parallel-plate capacitor has plate area A, plate...Ch. 24 - Consider the use of capacitors as memory cells. A...Ch. 24 - To get an idea how big a farad is, suppose you...Ch. 24 - A student wearing shoes with thin insulating soles...Ch. 24 - A parallel-plate capacitor with plate area A = 2.0...Ch. 24 - Let us try to estimate the maximum static...Ch. 24 - Paper has a dielectric constant K = 3.7 and a...Ch. 24 - (II) Six physics students were each given an air...
Additional Science Textbook Solutions
Find more solutions based on key concepts
7. Which bones form via intramembranous ossification?
a. Irregular bones
b. Certain flat bones
c. Long bones
d....
Human Anatomy & Physiology (2nd Edition)
What type of unconformity separates layer G from layer F?
Applications and Investigations in Earth Science (9th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The dielectric to be used in a parallel-plate capacitor has a dielectric constant of 3.60 and a dielectric strength of 1.60107 V/m. The capacitor has to have a capacitance of 1.25 nF and must be able to withstand a maximum potential difference 5.5 kV. What is the minimum area the plates of the capacitor may have?arrow_forwardAn electronics technician wishes to construct a parallel plate capacitor using rutile ( = 100) as the dielectric. The area of the plates is 1.00 cm2. What is the capacitance if the rutile thickness is 1.00 mm? (a) 88.5 pF (b) 177 pF (c) 8.85 F (d) 100 F (e) 35.4 Farrow_forwardA spherical capacitor consists of a spherical conducting shell of radius b and charge 2Q that is concentric with a smaller conducting sphere of radius a and charge +Q (Fig. P20.36). (a) Show that its capacitance is C=abke(ba) (b) Show that as b approaches infinity, the capacitance approaches the value a/ke = 40a. Figure P20.36arrow_forward
- What is the maximum charge that can be stored on the 8.00-cm2 plates of an air-filled parallel-plate capacitor beforebreakdown occurs? The dielectric strength of air is 3.00 MV/m.arrow_forwardWhen a potential difference of 150. V is applied to the plates of an air-filled parallel-plate capacitor, the plates carry a surface charge density of 3.00 1010 C/cm2. What is the spacing between the plates?arrow_forwardAir breaks down and conducts charge as a spark if the electric field magnitude exceeds 3.00 106 V/m. (a) Determine the maximum charge Qmax that can be stored on an air-filled parallel-plate capacitor with a plate area of 2.00 104 m2. (b) A 75.0 F air-filled parallel-plate capacitor stores charge Qmax. Find the potential difference across its plates.arrow_forward
- A parallel-plate capacitor is charged and then is disconnected from the battery. By what factor does the stored energy change when the plate separation is then doubled? (a) It becomes four times larger. (b) It becomes two times larger. (c) It stays the same. (d) It becomes one-half as large. (e) It becomes one-fourth as large.arrow_forwardWhen a Leyden jar is charged by a hand generator (Fig. 27.1, page 828), the work done by the person turning the crank is stored as electric potential energy in the jar. When a capacitor is charged by a battery, where does the electric potential energy come from?arrow_forwardA parallel-plate capacitor has plates of area A = 7.00 102 m2 separated by distance d = 2.00 104 m. (a) Calculate the capacitance if the space between the plates is filled with air. What is the capacitance if the space is filled half with air and half with a dielectric of constant = 3.70 as in (b) Figure P16.56a, and (c) Figure P16.56b? (Hint: In (b) and (c), one of the capacitors is a parallel combination and the other is a series combination.) Figure P16.56arrow_forward
- Two Leyden jars are similar in size and shape, but one has glass as the dielectric and the other ebonite. The glass jar is charged, but when the charge is shared between the two jars (connected in parallel), the electric potential drops by 40% of its initial value. If the dielectric constant of glass is 3.0, find the dielectric constant of ebonite.arrow_forwardA parallel-plate capacitor has square plates that are 8.00 cm on each side and 3.80 mm apart. The space between the plates is completely filled with two square slabs of dielectric, each 8.00 cm on a side and 1.90 mm thick. One slab is Pyrex glass and the other slab is polystyrene. If the potential difference between the plates is 86.0 V, find how much electrical energy can be stored in this capacitor.arrow_forwardWhat If? The two capacitors of Problem 13 (C1 = 5.00 F and C2 = 12.0 F) are now connected in series and to a 9.00-Y battery. Find (a) the equivalent capacitance of the combination. (b) the potential difference across each capacitor, and (c) the charge on each capacitor.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY