(II) In a dynamic random access memory (DRAM) computer chip, each memory cell chiefly consists of a capacitor for charge storage. Each of these cells represents a single binary-bit value of 1 when its 35-fF capacitor (1 fF = 10 −15 F) is charged at 1.5 V, or 0 when uncharged at 0 V. ( a ) When it is fully charged, how many excess electrons are on a cell capacitor’s negative plate? ( b ) After charge has been placed on a cell capacitor’s plate, it slowly “leaks” off (through a variety of mechanisms) at a constant rate of 0.30 fC/s. How long does it take for the potential difference across this capacitor to decrease by 1.0% from its fully charged value? (Because of this leakage effect, the charge on a DRAM capacitor is “refreshed” many times per second.)
(II) In a dynamic random access memory (DRAM) computer chip, each memory cell chiefly consists of a capacitor for charge storage. Each of these cells represents a single binary-bit value of 1 when its 35-fF capacitor (1 fF = 10 −15 F) is charged at 1.5 V, or 0 when uncharged at 0 V. ( a ) When it is fully charged, how many excess electrons are on a cell capacitor’s negative plate? ( b ) After charge has been placed on a cell capacitor’s plate, it slowly “leaks” off (through a variety of mechanisms) at a constant rate of 0.30 fC/s. How long does it take for the potential difference across this capacitor to decrease by 1.0% from its fully charged value? (Because of this leakage effect, the charge on a DRAM capacitor is “refreshed” many times per second.)
(II) In a dynamic random access memory (DRAM) computer chip, each memory cell chiefly consists of a capacitor for charge storage. Each of these cells represents a single binary-bit value of 1 when its 35-fF capacitor (1 fF = 10−15 F) is charged at 1.5 V, or 0 when uncharged at 0 V. (a) When it is fully charged, how many excess electrons are on a cell capacitor’s negative plate? (b) After charge has been placed on a cell capacitor’s plate, it slowly “leaks” off (through a variety of mechanisms) at a constant rate of 0.30 fC/s. How long does it take for the potential difference across this capacitor to decrease by 1.0% from its fully charged value? (Because of this leakage effect, the charge on a DRAM capacitor is “refreshed” many times per second.)
Solve and answer the question correctly please. Thank you!!
་
The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad,
where t is in seconds.
Part A
Determine the magnitude of the particle's velocity at the instant t = 1.5 s.
Express your answer to three significant figures and include the appropriate units.
v =
Value
Submit
Request Answer
Part B
?
Units
Determine the magnitude of the particle's acceleration at the instant t = 1.5 s.
Express your answer to three significant figures and include the appropriate units.
a =
Value
A
?
Units
Solve and answer the question correctly please. Thank you!!
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.