
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.4CYU
Check Your Understanding When a cylindrical capacitor is given a charge of 0.500 nC, a potential difference of 20.0 V is measured between the cylinders, (a) What is the capacitance of this system? (b) If the cylinders are 1.0 m long, what is the ratio of their radii?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
If points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.
Consider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v
kinetic energy of the system is converted to internal energy?
30.0°
130.0
=
green
11.0 m/s, and m blue is 25.0% greater than m
'green'
what are the final speeds of each puck (in m/s), if 1½-½ t
the
Consider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in
m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m.
m2
=
m₁
m
hm1
hm2
m
i
Chapter 8 Solutions
University Physics Volume 2
Ch. 8 - Check Your Understanding The capacitance of a...Ch. 8 - Check Your Understanding Verify that /V and e0/d...Ch. 8 - Check Your Understanding The radius of the outer...Ch. 8 - Check Your Understanding When a cylindrical...Ch. 8 - Check Your Understanding Determine the net...Ch. 8 - Check Your Understanding The potential difference...Ch. 8 - Check Your Understanding When a dielectric is...Ch. 8 - Check Your Understanding Continuing with Example...Ch. 8 - Check Your Understanding Repeat the calculations...Ch. 8 - Does the capacitance of a device depend on the...
Ch. 8 - Would you place the plates of a parallel-plate...Ch. 8 - The value of the capacitance is zero if the plates...Ch. 8 - If the plates of a capacitor have different areas,...Ch. 8 - Does the capacitance of a spherical capacitor...Ch. 8 - If you wish to store a large amount of charge in a...Ch. 8 - What is the maximum capacitance you can get by...Ch. 8 - If you wish to store a large amount of energy in a...Ch. 8 - Discuss what would happen if a conducting slab...Ch. 8 - Discuss how the energy stored in an empty but...Ch. 8 - Distinguish between dielectric strength and...Ch. 8 - Water is a good solvent because it has a high...Ch. 8 - Water has a high dielectric constant. Explain why...Ch. 8 - Elaborate on why molecules in a dielectric...Ch. 8 - Explain why the dielectric constant of a substance...Ch. 8 - Give a reason why a dielectric material increases...Ch. 8 - Elaborate on the way in which the polar character...Ch. 8 - Sparks will occur between the plates of an...Ch. 8 - What charge is stored in a 180.0F capacitor when...Ch. 8 - Find the charge stored when 5.50 V is applied to...Ch. 8 - Calculate the voltage applied to a 2.00F capacitor...Ch. 8 - What voltage must be applied to an 8.00-nF...Ch. 8 - What capacitance is needed to store 3.00C of...Ch. 8 - What is the capacitance of a large Van de Graaff...Ch. 8 - The plates of an empty parallel-plate capacitor of...Ch. 8 - A 60.0-pF vacuum capacitor has a plate area of...Ch. 8 - A set of parallel plates has a capacitance of 5.0F...Ch. 8 - Consider Earth to be a spherical conductor of...Ch. 8 - If the capacitance per unit length of a...Ch. 8 - , An empty parallel-plate capacitor has a...Ch. 8 - A 4.00-pF is connected in series with an 8.00-pF...Ch. 8 - Three capacitors, with capacitances of C1=2.0F ,...Ch. 8 - Find the total capacitance of this combination of...Ch. 8 - Suppose you need a capacitor bank with a total...Ch. 8 - What total capacitances can yon make by connecting...Ch. 8 - Find the equivalent capacitance of the combination...Ch. 8 - Find the net capacitance of the combination of...Ch. 8 - A 40-pF capacitor is charged to a potential...Ch. 8 - A 2.0F capacitor and a 4.0F capacitor are...Ch. 8 - How much energy is stored in an 8.00F capacitor...Ch. 8 - A capacitor has a charge of 2.5C when connected to...Ch. 8 - How much energy is stored in die electrical field...Ch. 8 - (a) What is the energy stored in the 10.0F...Ch. 8 - In open-heart surgery, a much smaller amount of...Ch. 8 - A 165F capacitor is used in conjunction with a dc...Ch. 8 - Suppose you have a 9.00-V battery, a 2.00F...Ch. 8 - An anxious physicist worries that the two metal...Ch. 8 - A parallel-plate capacitor is made of two square...Ch. 8 - Suppose that the capacitance of a variable...Ch. 8 - Show that for a given dielectric material, the...Ch. 8 - An air-filled capacitor is made from two flat...Ch. 8 - A capacitor is made from two concentric spheres,...Ch. 8 - A parallel-plate capacitor has charge of magnitude...Ch. 8 - Some cell walls in the human body have a layer of...Ch. 8 - A parallel-plate capacitor with only air between...Ch. 8 - Two flat plates containing equal and opposite...Ch. 8 - For a Teflon ™-filled, parallel-plate capacitor,...Ch. 8 - Find the capacitance of a parallel-plate capacitor...Ch. 8 - (a) What is the capacitance of a parallel-plate...Ch. 8 - Two parallel plates have equal and opposite...Ch. 8 - The dielectric to be used in a parallel-plate...Ch. 8 - When a 360-nF air capacitor is connected to a...Ch. 8 - A parallel-plate capacitor has square plates that...Ch. 8 - A capacitor is made from two flat parallel plates...Ch. 8 - An air-filled (empty) parallel-plate capacitor is...Ch. 8 - Suppose that the capacitance of a variable...Ch. 8 - Earth can be considered as a spherical capacitor...Ch. 8 - A 4.00F capacitor and a 6.00F capacitor are...Ch. 8 - Three capacitors having capacitances of 8.40,...Ch. 8 - A parallel-plate capacitor with capacitance 5.0F...Ch. 8 - (a) How much energy is stored in the electrical...Ch. 8 - Three capacitors having capacitances 8.4, 8.4, and...Ch. 8 - (a) An 8.00/F capacitor is connected in parallel...Ch. 8 - (a) On a particular day, it takes 9.60103 J of...Ch. 8 - (a) A certain parallel-plate capacitor has plates...Ch. 8 - A prankster applies 450 V to an 80.0F capacitor...Ch. 8 - A spherical capacitor is formed from two...Ch. 8 - The network of capacitors shown below are all...Ch. 8 - Electronic flash units for cameras contain a...Ch. 8 - A spherical capacitor is formed from two...Ch. 8 - Prob. 81CPCh. 8 - A parallel-plate capacitor is filled with two...Ch. 8 - A parallel-plate capacitor is filled with two...Ch. 8 - A capacitor has parallel plates of area 12 cm2...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
15. a. Compute the binding energy of the reactants and of the products in the nuclear fusion reaction
3H + 3He ...
College Physics: A Strategic Approach (3rd Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forwardThree carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forward
- A girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/sarrow_forwardTwo objects of masses m₁ 0.48 kg and m₂ = 0.86 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k 260 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.4 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b). (Let the positive direction be to the right. Indicate the direction with the sign of your answer.) m/s V1 V2= m1 m/s k m2 a す。 k m2 m1 barrow_forwardSand from a stationary hopper falls on a moving conveyor belt at the rate of 4.90 kg/s as shown in the figure below. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.710 m/s under the action of a constant horizontal external force F by the motor that drives the belt. Fext i (a) Find the sand's rate of change of momentum in the horizontal direction. (b) Find the force of friction exerted by the belt on the sand. (c) Find the external force ext' (d) Find the work done by F in 1 s. ext (e) Find the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. ext suppliedarrow_forward
- An unstable atomic nucleus of mass 1.84 × 10-26 kg initially at rest disintegrates into three particles. One of the particles, of mass 5.14 × 10-27 kg, moves in the y direction with a speed of 6.00 × 106 m/s. Another particle, of mass 8.46 × 10-27 kg, moves in the x direction with a speed of 4.00 x 106 m/s. (a) Find the velocity of the third particle. |Î + i) m/s (b) Find the total kinetic energy increase in the process. ]arrow_forwardTwo gliders are set in motion on an air track. A light spring of force constant k is attached to the back end of the second glider. As shown in the figure below, the first glider, of mass m₁, moves to the right with a speed V₁, and the second glider, of mass m₂, moves more slowly to the right with a speed, V2. VI m2 i When m₁ collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of V1, V2, m₁, m2, and k, find the following. (Use any variable or symbol stated above as necessary.) (a) speed v at maximum compression V = (b) the maximum compression Xmax Xmax = (c) the speed of each glider after m₁ V1f = has lost contact with the spring (Use any variable or symbol stated above as necessary.) V2farrow_forwardAs shown below, a bullet of mass m and speed v is fired at an initially stationary pendulum bob. The bullet goes through the bob, and exits with a speed of pendulum bob will barely swing through a complete vertical circle? (Use the following as necessary: m, L, g, and M for the mass of the bob.) 2 The pendulum bob is attached to a rigid pole of length L and negligible mass. What is the minimum value of v such that the V = L m M v/2 iarrow_forward
- As shown in the figure, a billiard ball with mass m₂ is initially at rest on a horizontal, frictionless table. A second billiard ball with mass m₁ moving with a speed 2.00 m/s, collides with m2. Assume m₁ moves initially along the +x-axis. After the collision, m₁ moves with speed 1.00 m/s at an angle of 0 = 48.0° to the positive x-axis. (Assume m₁ = 0.200 kg and m₂ = 0.300 kg.) m₁ Before the collision Vli After the collision Mi sin 9 Jif "If cos Vof COS U2f sin o Mo b (a) Determine the speed (in m/s) of the 0.300 kg ball after the collision. m/s (b) Find the fraction of kinetic energy transferred away or transformed to other forms of energy in the collision. |AKI K;arrow_forwardA block with mass m₁ = 0.600 kg is released from rest on a frictionless track at a distance h₁ = 2.55 m above the top of a table. It then collides elastically with an object having mass m₂ = 1.20 kg that is initially at rest on the table, as shown in the figure below. h₁ իջ m m2 (a) Determine the velocities of the two objects just after the collision. (Assume the positive direction is to the right. Indicate the direction with the signs of your answers.) V1= m/s m/s (b) How high up the track does the 0.600-kg object travel back after the collision? m (c) How far away from the bottom of the table does the 1.20-kg object land, given that the height of the table is h₂ = 1.75 m? m (d) How far away from the bottom of the table does the 0.600-kg object eventually land? marrow_forwardAn estimated force-time curve for a baseball struck by a bat is shown in the figure below. Let F F(N) Fmax TÀ 0 t (ms) 0 la (a) the magnitude of the impulse delivered to the ball N.S (b) the average force exerted on the ball KN = 17,000 N, t = max a 1.5 ms, and t₁ = 2 ms. From this curve, determine the following.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY