Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 41QLP
Emulsion cutting fluids typically consist of 95% water and 5% soluble oil and chemical additives. Why is the ratio so unbalanced? Is the oil needed at all?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A furniture company that makes upholstered chairs and sofas must cut large quantities of fabrics. Many of these fabrics are strong and wear-resistant, which properties make them difficult to cut. What nontraditional process(es) would you recommend to the company for this application? Justify your answer by indicating the characteristics of the process that make it attractive.
8 - Orthogonal cutting is performed on a metal whose mass specific heat = 1.0 J/g-C, density 2.9 g/cm3, and thermal
diffusivity = 0.8 cm2/s. The cutting speed is 4.5 m/s, uncut chip thickness (feed) is 0.25 mm, and width of cut (depth) is
2.2 mm. The cutting force is measured at 1170 N.
Using Cook's equation, determine the cutting temperature.
a)
417.09
b) O 707.60
C)
528.03
d) O 316.82
Boş bırak
Choose TWO (2) types of cutting processes that are suitable for cutting thick materials (>20mm thick plate).
Chapter 22 Solutions
Manufacturing Engineering & Technology
Ch. 22 - What are the major properties required of...Ch. 22 - What is the composition of a typical carbide tool?Ch. 22 - Why were cutting-tool inserts developed?Ch. 22 - Why are some tools coated? What are the common...Ch. 22 - Explain the applications and limitations of...Ch. 22 - List the major functions of cutting fluids.Ch. 22 - Why is toughness important for cutting-tool...Ch. 22 - Is the elastic modulus important for cutting-tool...Ch. 22 - Explain how cutting fluids penetrate the toolchip...Ch. 22 - List the methods by which cutting fluids are...
Ch. 22 - Describe the advantages and limitations of (a)...Ch. 22 - What is a cermet? What are its advantages?Ch. 22 - Explain the difference between M-series and...Ch. 22 - Why is cBN generally preferred over diamond for...Ch. 22 - What are the advantages to dry machining?Ch. 22 - Explain why so many different types of...Ch. 22 - Which tool-material properties are suitable for...Ch. 22 - Describe the reasons for and advantages of coating...Ch. 22 - Make a list of the alloying elements used in...Ch. 22 - As stated in Section 22.1, tool materials can have...Ch. 22 - Explain the economic impact of the trend shown in...Ch. 22 - Why does temperature have such an important effect...Ch. 22 - Ceramic and cermet cutting tools have certain...Ch. 22 - What precautions would you take in machining with...Ch. 22 - Can cutting fluids have any adverse effects in...Ch. 22 - Describe the trends you observe in Table 22.2.Ch. 22 - Why are chemical stability and inertness important...Ch. 22 - Titanium-nitride coatings on tools reduce the...Ch. 22 - Describe the necessary conditions for optimal...Ch. 22 - Negative rake angles generally are preferred for...Ch. 22 - Do you think that there is a relationship between...Ch. 22 - Make a survey of the technical literature, and...Ch. 22 - In Table 22.1, the last two properties listed...Ch. 22 - It has been stated that titanium-nitride coatings...Ch. 22 - Note in Fig. 22.1 that all tool materials,...Ch. 22 - Referring to Table 22.1, state which tool...Ch. 22 - Which of the properties listed in Table 22.1 is,...Ch. 22 - If a drill bit is intended only for woodworking...Ch. 22 - What are the consequences of a coating on a tool...Ch. 22 - Discuss the relative advantages and limitations of...Ch. 22 - Emulsion cutting fluids typically consist of 95%...Ch. 22 - List and explain the considerations involved in...Ch. 22 - Review the contents of Table 22.1. Plot several...Ch. 22 - Obtain data on the thermal properties of various...Ch. 22 - The first column in Table 22.2 shows 10 properties...Ch. 22 - Describe in detail your thoughts regarding the...Ch. 22 - One of the principal concerns with coolants is...Ch. 22 - How would you go about measuring the effectiveness...Ch. 22 - There are several types of cutting-tool materials...Ch. 22 - Assume that you are in charge of a laboratory for...Ch. 22 - Tool life could be greatly increased if an...Ch. 22 - List the concerns you would have if you needed to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Help!arrow_forward(e) Briefly describe types of chips that occur in metal cutting. (f) For orthogonal cutting, the tool rake angle =15°. The chip thickness before the cut is 0.30mm and the cut yields a deformed chip thickness = 0.65mm. Calculate the shear plane angle and shear strain.arrow_forwardOrthogonal cutting is performed on a metal whose mass specific heat = 1.0 J/g-C, density = 2.9 g/cm, and thermal diffusivity = 0.8 cm2/s. Cutting speed = 3.5 m/s, uncut chip thickness = 0.25 mm, and width of cut = 2.2 mm. Cutting force = 950 N. Determine the cutting temperature if the ambient temperature = 22°C.arrow_forward
- (a) Draw and label the basic orthogonal cutting process model. The diagram must include cutting direction, shear plane, chip formation and all relevant angles. (b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fo = 5000 N, and Thrust force, Fi= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process. *)arrow_forwardWhy do we avoid cold and cold forming during the cutting process?arrow_forwardExplain the following terms and situations in metal cutting. Give enough explanation with figures if it is necessary. A)Force and chatter vibrations. How can you detect the vibration during the machining? How can you decide which type of the vibration you have? B) Mode shapes. C)Mode coupling. D)Process damping. Which parameters can affect the process damping? i)Mode coupling. j) Regenerative chatter vibrations. k) Stability lobes.arrow_forward
- A 150-mm-long, 12.5-mm-diameter 304 stainless-steel rod is being reduced in diameter to 12.0 mm by turning on a lathe. The spindle rotates at N = 400 rpm, and the tool is traveling at an axial speed of 200 mm/min. Calculate the cutting speed, material- removal rate, cutting time, power dissipated, and cutting force. %3Darrow_forward(b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to = 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fc = 500 N, and Thrust force, F1= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process.arrow_forwardSHEET 5 Grinding, Welding and Galvanizing operations 1- Define Grinding process, what are the main characteristics of classification of a grinding wheel? 2- What are the main grinding operations, why coolant is uses in any cutting operation? 3- What are the main classes of welding? 4- With drawing explain flam different types, what type is used in cutting and why? 5- What are the differences between OXYACETYLENE and ARC welding? 6- What are the defects of ARC welding operation? 7- Explain the Electric Resistance Welding? 8- Define the GALVANIZING Process and what are the main governing parameters in this operation?arrow_forward
- Calculate the material removal rate and electrode feed rate in the electrochemical machining of an iron surface that is 25 mm × 25 mm in cross-section, using NaCl in water as electrolyte. The gap between the tool and the work-piece is 0.25 mm. The supply voltage is 12 volt D.C. The specific resistance of electrolyte is 3 2 cm. Take for iron: Valency = 2, Atomic weight = 55.85,Density = 7860 kg/m³.arrow_forwardWhat are the functions served by cutting fluid? Give broad classification of cutting fluid and explain each in detail .arrow_forwardmanufacturing technology please answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License