Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 52SDP
Tool life could be greatly increased if an effective means of cooling and lubrication were developed. Design methods of delivering a cutting fluid to the cutting zone, and discuss the advantages and shortcomings of your design.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 2. The two sources of heat are (a) shearing in the primary shear plane and (b) friction at
the tool-chip interface. What type of the tool wear or tool failure could be caused as a result of
developing these heat sources on machining process? Explain your answer in accordance with
following representation of tool wear.
Insert cutting edge
(b)
During a certain machining experiment at the UCSI workshop, it is observed
that temperature at the tool workpiece interface is 1200 °C at a cutting speed of
300 mm/min with a feed rate of 0.002 mm/rev.
(1)
Analyse how the temperature will be affected if the cutting speed is
increased by 100 %.
(ii)
Detemine the cutting speed necessary to achieve a maximum cutting
temperature of 900 °C.
Question 1: Explain the following terms and situations in metal cutting. Give enough explanation with figures if it is necessary.
a) Up and down milling operations. What are the effects on the workpiece surface finish and machine tool? b) Orthogonal and oblique cutting. c) Cutting force diagram in orthogonal cutting. d) Theoretical prediction of shear angle in orthogonal cutting. e) Machinability. f) Force and chatter vibrations. How can you detect the vibration during the machining? How can you decide which type of the vibration you have? g) Mode shapes. Mode coupling. h) Process damping. Which parameters can affect the process damping? i) j) Regenerative chatter vibrations. k) Stability lobes.
Question 2: How will the cutting force be affected by the following situations during the machining operation? Why?
a) Large rake angle b) Small relief angle c) Large nose radius d) Sharp cutting edge e) Smooth rake face f) Hard workpiece material g) High cutting speed h) Large feed rate i)…
Chapter 22 Solutions
Manufacturing Engineering & Technology
Ch. 22 - What are the major properties required of...Ch. 22 - What is the composition of a typical carbide tool?Ch. 22 - Why were cutting-tool inserts developed?Ch. 22 - Why are some tools coated? What are the common...Ch. 22 - Explain the applications and limitations of...Ch. 22 - List the major functions of cutting fluids.Ch. 22 - Why is toughness important for cutting-tool...Ch. 22 - Is the elastic modulus important for cutting-tool...Ch. 22 - Explain how cutting fluids penetrate the toolchip...Ch. 22 - List the methods by which cutting fluids are...
Ch. 22 - Describe the advantages and limitations of (a)...Ch. 22 - What is a cermet? What are its advantages?Ch. 22 - Explain the difference between M-series and...Ch. 22 - Why is cBN generally preferred over diamond for...Ch. 22 - What are the advantages to dry machining?Ch. 22 - Explain why so many different types of...Ch. 22 - Which tool-material properties are suitable for...Ch. 22 - Describe the reasons for and advantages of coating...Ch. 22 - Make a list of the alloying elements used in...Ch. 22 - As stated in Section 22.1, tool materials can have...Ch. 22 - Explain the economic impact of the trend shown in...Ch. 22 - Why does temperature have such an important effect...Ch. 22 - Ceramic and cermet cutting tools have certain...Ch. 22 - What precautions would you take in machining with...Ch. 22 - Can cutting fluids have any adverse effects in...Ch. 22 - Describe the trends you observe in Table 22.2.Ch. 22 - Why are chemical stability and inertness important...Ch. 22 - Titanium-nitride coatings on tools reduce the...Ch. 22 - Describe the necessary conditions for optimal...Ch. 22 - Negative rake angles generally are preferred for...Ch. 22 - Do you think that there is a relationship between...Ch. 22 - Make a survey of the technical literature, and...Ch. 22 - In Table 22.1, the last two properties listed...Ch. 22 - It has been stated that titanium-nitride coatings...Ch. 22 - Note in Fig. 22.1 that all tool materials,...Ch. 22 - Referring to Table 22.1, state which tool...Ch. 22 - Which of the properties listed in Table 22.1 is,...Ch. 22 - If a drill bit is intended only for woodworking...Ch. 22 - What are the consequences of a coating on a tool...Ch. 22 - Discuss the relative advantages and limitations of...Ch. 22 - Emulsion cutting fluids typically consist of 95%...Ch. 22 - List and explain the considerations involved in...Ch. 22 - Review the contents of Table 22.1. Plot several...Ch. 22 - Obtain data on the thermal properties of various...Ch. 22 - The first column in Table 22.2 shows 10 properties...Ch. 22 - Describe in detail your thoughts regarding the...Ch. 22 - One of the principal concerns with coolants is...Ch. 22 - How would you go about measuring the effectiveness...Ch. 22 - There are several types of cutting-tool materials...Ch. 22 - Assume that you are in charge of a laboratory for...Ch. 22 - Tool life could be greatly increased if an...Ch. 22 - List the concerns you would have if you needed to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Discuss the effects of cutting speed, feed rate, and depth of cut on the tool wear rate during a turning operation. How does each parameter influence the surface finish of the workpiece? Provide a detailed explanation based on the principles of metal cutting mechanics.arrow_forwardOnly answer question 2arrow_forward(a) Draw and label the basic orthogonal cutting process model. The diagram must include cutting direction, shear plane, chip formation and all relevant angles. (b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fo = 5000 N, and Thrust force, Fi= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process. *)arrow_forward
- Explain the following terms and situations in metal cutting. Give enough explanation with figures if it is necessary. A)Force and chatter vibrations. How can you detect the vibration during the machining? How can you decide which type of the vibration you have? B) Mode shapes. C)Mode coupling. D)Process damping. Which parameters can affect the process damping? i)Mode coupling. j) Regenerative chatter vibrations. k) Stability lobes.arrow_forwardA furniture company that makes upholstered chairs and sofas must cut large quantities of fabrics. Many of these fabrics are strong and wear-resistant, which properties make them difficult to cut. What nontraditional process(es) would you recommend to the company for this application? Justify your answer by indicating the characteristics of the process that make it attractive.arrow_forwardWhat are the functions served by cutting fluid? Give broad classification of cutting fluid and explain each in detail .arrow_forward
- (e) Briefly describe types of chips that occur in metal cutting. (f) For orthogonal cutting, the tool rake angle =15°. The chip thickness before the cut is 0.30mm and the cut yields a deformed chip thickness = 0.65mm. Calculate the shear plane angle and shear strain.arrow_forwardIn an orthogonal cutting test with a bar of 75 mm diameter is reduced to 73 mm by using a HSS tool with arake angle = 10o, following observations were made: length of the chip, lc = 69.44 mm, cutting ratio r =0.3, the horizontal component of the cutting force, FH = 1450 N, and the vertical component of the cuttingforce, FV = 850 N. The various parameters recorded in this cutting operation are: depth of cut, d = 2 mm;feed rate, f = 0.3 mm/rev, cutting speed, V = 60 m/min. Using Merchant’s theory calculate the following:1) Friction force along rake face2) Normal force acting on rake face3) Shear force along the shear plane4) Normal force acting on shear plane5) The percentage error in shear angle predicted by Merchant’s theory6) Shear velocity7) Chip velocity8) Total work done9) The shear work proportion out of the total work done10) The friction work proportion out of the total work donearrow_forwardIn a cutting test with 0.3 mm flank wear as tool failure criterion, a tool life of 10 min was obtained at a cutting velocity of 20 m/min. Taking tool life exponent as 0.25, the tool life in minutes at 40 m/min of cutting velocity will bearrow_forward
- Tool design What are some of the typical considerations for each one of the following metal cutting processes.arrow_forwardIn machining a mild steel work piece with carbide tool, the life of the tool was found to be 1 hour and 40 minutes, at a spindle speed of 30 m/min. Calculate the tool life if it has to be operated at a speed of 40% higher than the initial cutting speed. Also calculate the cutting speed if the tool is required to have a life of 2 hours and 45 minutes. Assume Taylor's exponent valuen is 0.28.arrow_forward(b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to = 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fc = 500 N, and Thrust force, F1= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License