Concept explainers
In 2008, Time magazine named as its invention of the year the development of personal genomics services by a company named 23andMe. Customers sent saliva samples to the company, which then genotyped approximately one million SNPs located across the genome, and communicated the data online to the customer along with what was claimed to be a “for education use only” assessment of potential risk for a variety of traits.
However, on November 22, 2013, the United States Food and Drug Administration (FDA) ordered 23andMe to stop marketing its personal genomics services because the accuracy of its SNP genotyping and risk predictions had not been validated as sufficiently accurate for medical use. The FDA was concerned that people might make serious medical decisions based on information from a test that was not clinically approved. Some elements of this ban were relieved in 2015 and 2017, but DNA testing services are still restrained from offering their customers all the pre-ban predictions. Defining these limits remains a contentious and unresolved issue.
a. | Can the information you would obtain from this personal genomics service tell you whether or not you have a |
b. | Can the information you would obtain from this personal genomics service inform you about your likelihood of having a disease that is a complex trait? Explain. |
c. | In December 2013, a reporter for The New York Times reported that she sent samples of her own DNA to three different companies (one of which was 23andMe), but the three companies provided very different estimates of her risk for a variety of complex traits. What were the likely causes of the differences in these estimates? |
d. | Do you think new scientific developments will help resolve these issues in the near future? |
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
ND STONY BROOK UNIVERSITY LOOSELEAF GENETICS: FROM GENES TO GENOMES
- You will use the following scenario to answer a group of 5 questions. You have isolated a microbe from an environmental sample. The microbe has the ability to perform a new metabolic reaction at a very low temperature, so you are excited that it could be a new species. You have shipped your samples off for sequencing and are now waiting for the results. Out of curiosity (and maybe boredom...) you decide to test your culture for the Catalase and Oxidase enzymes. Upon testing your sample for catalase, you don't see any bubbles; however, you do see a color change to purple during the Oxidase test. What results can you conclude from this? O Catalase-/ Oxidase + O Catalase +/ Oxidase + Catalase + / Oxidase- O Catalase / Oxidase - O None of the abovearrow_forwardWhich of the following is not a strength of using 16S rRNA for phylogenetic analyses? OA. It's cheap OB. It's easy to do C. It can be used to identify all the way down to the strain level OD. Both A & B OE. None of the abovearrow_forwardWhy are molecular approaches important to the field of microbial taxonomy and phylogeny? Phylogenetic inferences based on molecular approaches provide the most robust analysis of microbial evolution currently available. It allows for the collection of a large and accurate dataset from many organisms Almost no fossil record was left by microbes when compared to plants and animals All of the above None of the abovearrow_forward
- You will use the following scenario to answer a group of 5 questions. You have isolated a microbe from an environmental sample. The microbe has the ability to perform a new metabolic reaction at a very low temperature, so you are excited that it could be a new species. You have already cultured it and gone through the plate isolation procedure. Before you ship your samples off for sequencing, you want to do one final check of the A260 ratios. You get back the following ratios: A260/280 ratio is 1.89; A260/230 is 2.01. These ratios are close enough to the accepted "pure" values so they could be considered "pure" and mostly (if not completely) free of contaminants from the PCR process. True Falsearrow_forwardYou will use the following scenario to answer a group of 5 questions. You have isolated a microbe from an environmental sample. The microbe has the ability to perform a new metabolic reaction at a very low temperature, so you are excited that it could be a new species. After receiving your sequence back from the sequencing lab, you feel that you have, in fact, discovered and isolated a new species. You ask a fellow labmate about how you should proceed, and he tells you the following is the proper way to introduce a new species for recognition: Cultures have to be sent to international culture collections. Then a paper must be published describing the new organism and providing a genus and species name. You recall learning about this in your Microbiology course in college. Is this information from your colleague true or false? True Falsearrow_forwardis often a good indication of phylogenetic relatedness in phenotypes. Life-cycle patterns Cleavage patterns O Gene expression O Morphological similarityarrow_forward
- Which of the following is a weakness of using 16S rRNA for phylogenetic analyses? It can only go down to the family and genus levels It takes months to complete O Both of the above O None of the abovearrow_forwardAn unrooted tree containing ten unrelated species can become rooted by adding a descendant group related to two of the species. an unrelated outgroup. O a distantly related outgroup. O a descendant related to only one of the species.arrow_forwardWhat is the most appropriate purpose of building a phylogenetic tree? They look awesome You can use a tree to compare morphological characteristics of organisms It can be used to establish and analyze evolutionary relationships between species All of the abovearrow_forward
- Which of the following sequencing techniques can identify down to the strain level? O Multilocus sequence typing Genomic fingerprinting Whole genome sequencing OSNP analysis All of the abovearrow_forwardWhat is the "gold standard" that is currently applied to species designations in microbiology? 97% between species: 50% among whole genome 90% between species: 75% among whole genome 99% between species; 97% among whole genome 97% between species: 70% among whole genome Onone of the abovearrow_forwardYou will use the following scenario to answer a group of 5 questions. You have isolated a microbe from an environmental sample. The microbe has the ability to perform a new metabolic reaction at a very low temperature, so you are excited that it could be a new species. You have decided to send your sample off for sequencing. You need to determine which type of sequencing to use for the preliminary identification of your species. You decide that, for now, you only need to be able to identify the family and genus levels. Which type of sequencing do you think is the most appropriate? O Genomic Fingerprinting O Whole Genome Sequencing O 16S rDNA Sequencing O DNA-DNA hybridization Nextarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning