
(a)
Interpretation:
The formula of the oxide that in its highest oxidation state should be written.
Concept introduction:
Oxygen has six valence electrons in its valence shell, therefore, oxygen can achieve an octet by accepting two electrons from an active metal or by sharing two additional electrons through covalent bonding.
When oxygen reacts with active metals, it gives ionic oxides. With nonmetals, oxygen forms covalent oxides.
All the oxygen in oxides are in
(b)
Interpretation:
Each oxide should be classified as basic, acidic or amphoteric.
Concept introduction:
Oxides can be categorized as basic, acidic or amphoteric. Basic oxides are ionic and are formed by metals on the left side of the periodic table. Acidic oxides are covalent and are formed by nonmetals on the right side of the periodic table. Amphoteric oxides can react with both acids and bases.
(c)
Interpretation:
Which oxide is the most ionic and which oxide is the most covalent should be discussed.
Concept introduction:
When electronegativity difference between atoms in a bond is larger than two units, that bond is said to be ionic and when the difference is less than two, it is said to be a covalent bond.
(d)
Interpretation:
Which oxides are molecular and which are solids with an infinitely extended three-dimensional crystal structure should be determined.
Concept introduction:
Oxygen has six valence electrons in its valence shell, therefore, oxygen can achieve an octet by accepting two electrons from an active metal or by sharing two additional electrons through covalent bonding.
When oxygen reacts with active metals, it gives ionic oxides. With nonmetals, oxygen forms covalent oxides.
(e)
Interpretation:
Which oxide has the highest melting point and which has the lowest melting point should be determined.
Concept introduction:
Most of ionic oxides form crystal lattice structures. Lattice energies are very high, so, the bonds between atoms are difficult to break. So, ionic oxides have higher melting points. Most first row and second row nonmetal oxides have lower melting points, so, most of them exists as gas or liquid at room temperature.

Want to see the full answer?
Check out a sample textbook solution
Chapter 22 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- Curved arrows are used to illustrate the flow of electrons. Using the provided structures, draw the curved arrows that epict the mechanistic steps for the proton transfer between a hydronium ion and a pi bond. Draw any missing organic structures in the empty boxes. Be sure to account for all lone-pairs and charges as well as bond-breaking and bond-making steps. 2 56°F Mostly cloudy F1 Drawing Arrows > Q Search F2 F3 F4 ▷11 H. H : CI: H + Undo Reset Done DELLarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons. Draw out the benzene ring structure when doing itarrow_forward1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series. 2) Calculate the ionization energy of He* and L2+ ions in their ground states. 3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.arrow_forward
- Calculate the ionization energy of He+ and Li²+ ions in their ground states. Thannnxxxxx sirrr Ahehehehehejh27278283-4;*; shebehebbw $+$;$-;$-28283773838 hahhehdvaarrow_forwardPlleeaasseee solllveeee question 3 andd thankss sirr, don't solve it by AI plleeaasseee don't use AIarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forward
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax




