Concept explainers
(a)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pairs or lone pairs present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(b)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pair or lone pair present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of the below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(c)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pairs or lone pairs present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of the below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(d)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pairs or lone pair present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of the below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- Which is the stronger acid, HClO4 or HBrO4? Why?arrow_forwardWhich is the stronger acid, H2SO4 or H2SeO4? Why? You may wish to review the Chapter on acid-base equilibria.arrow_forwardXenon trioxide, XeO3, is reduced to xenon in acidic solution by iodide ion. Iodide ion is oxidized to iodine, I2. Write a balanced chemical equation for the reaction.arrow_forward
- The reaction of calcium hydride, CaH2, with water can be characterized as a Lewis acid-base reaction: CaH2(s)+2H2O(l)Ca(OH)2(aq)+2H2(g) Identify the Lewis acid and the Lewis base among the reactants. The reaction is also an oxidation-reduction reaction. Identify the oxidizing agent, the reducing agent, and the changes in oxidation number that occur in the reaction.arrow_forwardPlease Write the chemical equations for the following processes in the image below.arrow_forwardComplete and balance the following equations:(a) An active metal reacting with acid,Al(s)+HCl(aq)→ (b) A salt like (alkali metal) hydride reacting with water,LiH(s)+H2O(l)→arrow_forward
- (a) (i) (ii) (iii) With the aid of a simple schematic, explain what covalent bonding is and how it is formed. What are the differences between a covalent bond and an ionic bond? Which type of bond is found in crystalline silicon? At room temperature do you expect an ionic crystal to be a good electrical conductor or a good electrical insulator? Explain why.arrow_forwardComplete and balance the following equations:(a) An active metal reacting with acid, Al(s) 1 HCl(aq) →(b) A saltlike (alkali metal) hydride reacting with water, LiH(s) 1 H2O(l) →arrow_forwardConsider the series of reactions to synthesize the alum (KAl(SO4 )2 · xH2O(s)). ) Assuming an excess of the other reagents, from one mole of sulfuric acid H2SO4 , how many moles of alum will be produced?arrow_forward
- Selenium is prepared by the reaction of H₂SeO₃ with gaseous SO₂. (a) What redox process does the sulfur dioxide un-dergo? What is the oxidation state of sulfur in the product? (b) Given that the reaction occurs in acidic aqueous solution,what is the formula of the sulfur-containing species? (c) Write the balanced redox equation for the processarrow_forwardWrite the Lewis structure for each of the following species,describe its geometry, and indicate the oxidation state ofthe nitrogen: (a) NH4+, (b) NO2- , (c) N2O, (d) NO2.arrow_forwardDraw a Lewis structure for each species:(a) The cyclic silicate ion Si6O1812-(b) A cyclic hydrocarbon with formula C6H12arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning