![CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT](https://www.bartleby.com/isbn_cover_images/9780135204634/9780135204634_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pairs or lone pairs present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(b)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pair or lone pair present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of the below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(c)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pairs or lone pairs present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of the below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
(d)
Interpretation:
The electron dot structure and the geometrical structure of
Concept introduction:
VSEPR theory stands as Valence Shell Electron Pair Repulsion Theory. It helps to predict the molecular shape or geometry of the molecule with the help of the number of bond pairs or lone pair present in it. According to the VSEPR theory, the presence of lone pair on the central atom of molecule causes deviation from standard molecular geometry. This is because of the repulsion between lone pairs and bond pairs of the central atom of the molecule. The order of repulsion is:
Lone pair-lone pair > lone pair-bond pair > bond pair-bond pair
Based on the number of lone pairs and bond pairs, the molecular geometry can be determined with the help of the below table.
Number of hybridization | Bond pair | Lone pair | Geometry |
2 | 2 | 0 | Linear |
2 | 1 | 1 | Linear |
3 | 3 | 0 | Trigonal planar |
3 | 2 | 1 | Bent |
4 | 4 | 0 | Tetrahedral |
4 | 3 | 1 | Trigonal pyramidal |
4 | 2 | 2 | Bent |
5 | 5 | 0 | Trigonal bipyramidal |
5 | 4 | 1 | See saw |
5 | 3 | 2 | T shaped |
5 | 2 | 3 | Linear |
6 | 6 | 0 | Octahedral |
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 22 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- How would you distinguish the following compounds from each other using IR only (GRADED)? NH2 HN VS کر A B VS N. Carrow_forwardQ4: Draw the mirror image of the following molecules. Are the molecules chiral? C/ F CI CI CH3 CI CH3 CI CH3 CH 3 |||||... CH3arrow_forwardQ6: Monochlorination of methylcyclopentane can result in several products. When the chlorination occurs at the C2 position, how many stereoisomers are formed? If more than one is formed, are they generated in equal or unequal amounts? 2arrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardPlease correct answer and don't use hand ratingarrow_forwardQ: Draw the molecular orbital energy level diagram for the following molecules. 1- The SF4 molecule is seesaw molecular geometry and has C2v point group. 2- The Mn(CO)s molecule with C4v point group is square pyramidal.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)